论文部分内容阅读
由腐蚀造成的井下工具断裂失效严重威胁着我国石油工业的安全运行。化学复合镀层具有优异的耐蚀、耐磨性能、镀层均匀、无边缘效应,广泛应用于金属材料表面防腐。针对井下工具腐蚀问题,以L245钢为基材,表面制备Ni-W-P-nSiO2化学复合镀层,并采用正交试验和单因素分析方法进行工艺优化;利用光学显微镜(OM)、扫描电镜(SEM)、X射线衍射(XRD)、透射电镜(TEM)和选区电子衍射(SAED)分析镀层的微观结构和物相组成;采用差示扫描量热法(DSC)研究镀层的晶化行为;通过热处理试验研究了镀层在不同温度(300、350、400、450、500℃)下的结构及性能变化;利用极化曲线(Tafel)、交流阻抗(EIS)、浸泡腐蚀和微区扫描电化学腐蚀(SECM)试验研究镀层耐氯离子腐蚀行为。主要研究结果如下:(1)Ni-W-P-nSiO2化学复合镀的最佳工艺条件为:温度~90℃、pH~8.5、nSiO2添加量~5 g/L。施镀最佳表面活性剂为:十二烷基硫酸钠(SDS)。在SDS表面活性剂下,镀层腐蚀电流密度最低(1.0755E-06A/cm2),自腐蚀电位最高(-0.33229V),容抗弧半径最大,电荷转移电阻为40280Ω,镀层的耐蚀性最佳,这与SDS镀层表面均匀致密及W含量高有关。典型的Ni-W-P-nSiO2化学复合镀层表面为胞状形貌,厚度均在20 μm左右,结合力约为30 N。(2)XRD和TEM分析发现镀层为非晶态和Ni纳米晶的混合结构,择优取向为Ni(111)晶面。通过谢乐公式计算纳米晶粒尺寸约为10 nm,与透射电镜高分辨图中局部晶粒大小一致。(3)镀层在活化基体试样边缘或划痕处择优生长,并沿基材表面扩张,接着在具有自催化活性的镍基镀层表面展开第二层、第三层生长,镀层厚度逐渐增加,硬度先增加后趋于稳定(729.2 HV)。根据不同升温速率下(5,10,15,20℃/min)镀层的晶化初始(Onset)和晶化峰值(Peak)温度,利用Kissinger方程推导出Ni-W-P-nSiO2化学复合镀层的晶化活化能为:Ep=279.737 kJ/mol,E0=306.50384kJ/mol。(4)热处理试验分析表明,镀层在350℃热处理后耐蚀性最佳,腐蚀电流密度(icorr):4.157E-07A/cm2,自腐蚀电位(Ecorr):-0.36806 V,电荷转移电阻(Rct):98240 Ω;在400℃时,P原子开始偏聚,Ni3P相析出,硬度达最高(950.7 HV),镀层非晶结构逐渐晶化,耐蚀性降低;经450℃热处理后,镀层表面生成氧化膜,耐蚀性增加;在500℃时,晶粒长大,耐蚀性降低。因此,随着热处理温度由低到高,镀层结构变化规律:非晶和Ni纳米晶(300 ℃)→非晶和纳米晶聚集(350℃)→非晶态部分晶化、Ni纳米晶和 Ni3P 晶相(400℃)→Ni3P 增加(450℃)→晶粒长大(500℃)。(5)二氧化硅的加入不改变Ni-W-P镀层表面胞状组织形貌及物相结构,但细化镀层表面颗粒,降低孔隙率,增大表面接触角。模拟现场高温高压腐蚀试验表明,Ni-W-P-nSiO2化学复合镀层、Ni-W-P化学镀层和L245钢的腐蚀速率分别为0.0552 mm/a、0.1075 mm/a和0.1784 mm/a,Ni-W-P-nSiO2化学复合镀层耐蚀性最佳。在模拟油田腐蚀环境下,镀层表面均匀腐蚀生成Ni3S2腐蚀产物,并在镀层表面出现明显局部腐蚀现象,但局部腐蚀未穿孔,镀层仍能保护基材。(6)在Ni-W-P-nSiO2镀层表面的SECM试验结果中,测试区域内未出现局部活化点,表明镀层制备较为均匀。镀层截面SECM分析表明,镀层较基材电流明显降低,耐蚀性增加。