【摘 要】
:
为满足舰船武器装备的轻量化,铝合金铸件开始大规模被应用于船舶工业。目前,在舰载装备领域应用较多的主要为ZL101、ZL104等传统牌号Al-Si铸造铝合金,存在强度较低、耐蚀性差的问题,难以满足在高湿、高盐的环境下的长时间服役。本课题研究了复合添加Y、Zr元素和超声处理对铸态及T6热处理态ZL101合金组织、力学性能及耐蚀性能的影响,探究了微量元素复合强化和超声作用机理,为高强度耐蚀铝合金的应用提
论文部分内容阅读
为满足舰船武器装备的轻量化,铝合金铸件开始大规模被应用于船舶工业。目前,在舰载装备领域应用较多的主要为ZL101、ZL104等传统牌号Al-Si铸造铝合金,存在强度较低、耐蚀性差的问题,难以满足在高湿、高盐的环境下的长时间服役。本课题研究了复合添加Y、Zr元素和超声处理对铸态及T6热处理态ZL101合金组织、力学性能及耐蚀性能的影响,探究了微量元素复合强化和超声作用机理,为高强度耐蚀铝合金的应用提供了实验及理论基础。具体如下:首先研究了Y、Zr等元素的添加对铸态ZL101合金组织和性能的影响。在合金中单独加入Y元素后,α-Al的二次枝晶臂间距缩小,且使共晶Si从板条状转化为纤维状。复合加入了0.3wt.%的Y元素和0.25wt.%的Zr元素时,共晶Si改性效果最强,其力学性能最佳,屈服强度、抗拉强度、延伸率分别达到127MPa,211MPa,6.26%,较ZL101合金增加了20.95%,19.69%,42.59%;且合金的耐腐蚀性提高,这主要由于富铁相π-Al8FeMg3Si6转变为π-Al8FeMg3Si6YxZry,减小了与α-Al之间的电位差。最终确定了铸态下性能最佳的合金成分为Al+7Si+0.3Mg+0.3Y+0.25Zr。系统研究了T6热处理对添加了Y、Zr等元素合金组织与性能的影响。合金经过T6热处理后,力学性能显著提升,在ZL101+0.3Y+0.25Zr合金中,Al3Zr颗粒数量显著增加,尺寸减少,在合金中分布的更加弥散。因此合金力学性能显著提高,其屈服强度、抗拉强度、延伸率分别达到182Mpa,305Mpa,7.41%。T6热处理后,富集在晶界处的Mg2Si固溶入基体,使其作为阳极弥散分布在基体中,增强对Al合金基体的保护,显著的提升了合金的耐腐蚀性能。研究了超声处理下ZL101和ZL101+0.3Y+0.25Zr两种合金组织与性能。超声处理后,空化作用与声流效应促使α-Al晶粒由枝晶状转变为近等轴晶状。在超声功率为1400W时,两种合金均合金的力学性能最佳,T6处理后ZL101合金的抗拉强度、屈服强度和伸长率分别达到153.2MPa、255.3MPa和6.83%;ZL101+0.3Y+0.25Zr合金的抗拉强度、屈服强度和伸长率分别达到194.2MPa、323.7MPa和8.67%。且由于晶粒形貌的转变,使等轴晶晶界处的共晶硅阻碍了腐蚀区的拓展,有效提升了合金的耐蚀性能。
其他文献
电网的安全稳定运行对保证社会生产生活的有序进行具有重要意义。随着电网规模的不断扩大,其复杂性也越来越高,这意味着电网的稳定性、安全性和可靠性正面临着巨大的挑战。分析近年来世界各地发生的大规模停电事故,可以发现这些事故的起因大多是:电网局部线路出现故障后,该线路保护装置动作使故障线路被切除,之后潮流发生大规模转移,致使正常线路过载并引发过负荷保护装置动作,从而引起连锁跳闸反应。因此,为提高电网的运行
超高性能混凝土(UHPC)材料具有较高的力学性能和耐久性能,在桥梁工程中有着广阔的应用前景。但如果桥梁结构全部采用UHPC材料则工程造价过高,为了充分发挥UHPC材料的优异性能、提高经济效益,研究能够同时使用UHPC材料和普通钢筋混凝土材料的新型UHPC-RC组合梁是推广UHPC材料在桥梁工程中实际应用的重要方法之一。本文以安徽省某高速公路跨线人行天桥所采用的一种全装配式UHPC-RC箱型组合梁为
在基于中高压电网的光伏并网系统中,大功率DC/DC变换器作为关键部分,得到许多学者的关注。作为大功率DC/DC变换器的一员,LLC谐振变换器得到了大量的关注和应用,其功率器件电应力小、软开关范围宽、整机效率高。LLC谐振变换器可工作于两种工作状态,当其工作于LLC直流变压器(LLC DCT)状态时,需保持输入、输出电压的恒定增益比,对于变换器的工作区域选取、参数设计原则及控制策略有着不同的需求。在
我国膨胀土分布十分广泛,造成的工程危害和经济损失十分巨大,开展膨胀土改良研究,改善其工程性质一直是岩土工程界的热点问题;同时,作为世界范围内的钢材生产及钢渣产出大国,相较于美国、德国、日本等发达国家,我国的钢渣转化利用率极低,钢渣的产出堆存导致土地占用、河道淤积,带来严重的环境压力,开展钢渣资源化利用相关研究迫在眉睫。针对这一问题,本文依托国家自然科学基金面上项目(41672306),利用偏高岭土
当前能源危机、全球升温和环境污染已成为影响世界未来发展的不确定性因素,凭借着节能、环境友好和维护方便等优点,电动汽车得到各国政府和消费者的推崇,电动汽车行业得到迅速发展。电动汽车无线充电技术是一套基于磁感应耦合、电力电子能量变换和控制技术的能量传输技术,可将电能便捷、高效和灵活地从电网向电动汽车车载电池组无线传输。作为实现能量无线传输关键部分的磁耦合机构对电动汽车无线充电系统的效率、功率传输能力、
能源安全和环境保护是当今人类社会的两大重要议题。质子交换膜燃料电池(Proton Exchange Membrane Fuel Cell,PEMFC)是一种低温燃料电池,因具有能量密度高、结构简单、零排放等优点,拥有巨大的发展潜力和应用前景。PEMFC系统是一个非线性、多变量、多输入输出的复杂系统,安全、稳定、高效运行是其控制目标。PEMFC的研究主要集中于模型的建立以及对子系统的控制,这对于提高
近年来,随着电力电子技术的进步,功率变流技术也随之得到了迅猛发展,经过变流处理的电能在国民日常用电量中所占比例与日俱增。在最新的十四五规划中提出了大力推动绿色低碳的新能源技术,其中光伏和风电技术是发展的重点,这两项技术中变流器都承担着核心工作任务,并又以高电压、大功率的变流器为主要需求,现代变流器技术的性能指标目前主要受到拓扑结构和控制算法的影响,传统的两电平拓扑虽然结构简单,但却主要应用于低压的
电力系统低频振荡产生的原因一般是由于电力系统弱阻尼甚至负阻尼效应,在区域间联系弱、远距离输电的电力系统中尤为常见,电力系统低频振荡会严重影响电网中的电力设备安全稳定运行。双馈感应发电机(Doubly-fed Induction Generator,DFIG)的接入会影响电力系统原有的低频振荡模式,对研究电力系统低频振荡提出新的挑战。在DFIG中安装电力系统稳定器(Power System Stab
模态参数(频率、阻尼和振型)是反映桥梁动力特性的重要指标,广泛地应用于桥梁损伤识别、模型修正和优化设计等方向,其识别问题一直是土木工程领域重要研究课题。传统模态参数识别方法是在桥梁上安装大量传感器采集其动力响应,进一步通过数据处理工具获得模态参数,在振型识别方面存在数据处理工作量大、传感器数量多和识别精度偏低等亟待解决的问题。本文提出了一种基于车辆-桥梁系统瞬时频率的桥梁模态参数识别方法。本方法基
需求响应策略一般通过电价和激励等手段使用户在特定时段内转移或削减负荷,从而达到削峰填谷、提高电力系统稳定性的目的。然而,不同类型需求响应策略间的关系及其对电力系统可靠性的影响仍需深入挖掘。基于此,本文依托国家自然科学基金青年项目“考虑需求侧响应的主动配电系统风险评估及优化研究”项目(51607051),通过递进式结构对系统可靠性需求和需求响应策略的关系展开研究。本文首先提出典型日选取和时段划分方法