论文部分内容阅读
在传统最优化方法不断发展的同时,最近20多年兴起的进化算法异军突起,发展迅速.进化算法以达尔文的进化论为基础,通过模拟生物进化过程与机制来求解问题.进化算法不要求优化函数满足一定的条件或者性质,易于求解,已经成为智能算法的研究热点.其中人工蜂群算法就是一类求解速度较快、精度较高的进化算法,因其结构简单、易于实现,一经提出便受到众多学者的关注和研究.人工蜂群算法已被广泛应用于求解各种优化问题,如线性逼近、工程优化、车间调度等.本文通过改进人工蜂群算法在雇佣蜂阶段和观察蜂阶段的搜索方程,增加和调整搜索的结构,较好地提高了算法性能.进而把改进的人工蜂群算法应用于求解0-1背包问题、基于条件风险价值的投资组合模型、流水车间调度问题等,得到了较好的求解结果.本文主要工作如下:1.为了提高人工蜂群算法的求解速度和搜索能力,对搜索方程进行改进,提出改进人工蜂群算法(IABC算法)和新奇人工蜂群算法(NABC算法).并进行大量数据实验,验证了改进搜索方程的优越性.对人工蜂群算法步骤中的雇佣蜂阶段、观察蜂阶段的搜索方程分别引入当前全局最优解,以当前全局最优解为中心,进行邻域搜索,进而用随机搜索策略跳出局部最优解,得到较好的求解结果,提高了算法随机搜索的能力.算法的局部搜索能力和全局搜索能力也得到有效平衡.用标准函数集进行测试,并通过反复数值实验,结果表明,从取得的最优值和求解速度上,改进的人工蜂群算法(IABC算法和NABC算法)都有较好的优越性.然后把改进的搜索方程应用于差分进化算法,数据结果显示,改进后的差分进化算法(IDE算法)收敛速度得到很大提高,也验证了差分进化算法在求解问题最优值过程中是一种比较稳定的进化算法.同时再一次证明改进的搜索方程是一种优秀的搜索方法.2.0-1背包问题是一种应用非常广泛的优化问题,本文尝试用IABC算法对0-1背包问题进行求解,得到了不错的数据结果.在改进的人工蜂群算法(IABC算法)基础上,通过对搜索方程进行取整和离散化处理,提出离散的人工蜂群算法(DIABC算法),并应用于求解0-1背包问题.利用0-1背包问题的标准测试集进行数值实验,求得了较好的最优值,求解用时相对较短,验证了离散人工蜂群算法(DIABC算法)在求解0-1背包问题上具有很好的收敛性和有效性.3.近年来,投资组合模型在金融领域被深入研究和广泛应用,本文把IABC算法应用于求解基于条件风险价值(CVaR)的投资组合优化问题上,并用实际数据进行数值分析,结果表明该模型可合理地分散投资组合的市场风险.能有效提高投资者的投资收益率,计算速度较快.进一步说明了改进人工蜂群算法在求解实际问题中的可靠性和广泛性.4.流水车间调度问题在各行各业中都有应用,主要用来减少工作时间、降低工作成本和提高工作效率.在改进人工蜂群算法(IABC算法)框架的基础上,对初始化阶段、雇佣蜂阶段、观察蜂阶段分别调整了搜索方程,设计出适合求解混合流水车间调度问题的离散人工蜂群算法(HIABC算法).建立雇佣蜂、观察蜂和侦察蜂的搜索步骤,通过调度问题标准测试集进行数值实验,得到了较好的数值结果,验证了HIABC算法求解混合流水车间调度问题的有效性和稳定性.