论文部分内容阅读
随着社会的高速发展,不可再生能源的消耗的不断增加和能源供应问题的日益加剧,对于追求可再生能源和能量的二次应用已经成为当下的一个紧急任务。未来科技的一个重要挑战是制造具有高能量效率、多功能、少材料耗费的智能设备。热电效应可以将环境中的废弃热量转换成电能,且热电能量转换具有无机械损耗、无噪音、长寿命等优势,是优质的可再生能源来源。近年来,纳米技术和热功转换重新推动了纳米器件的研究,如热电整流器、热晶体管等。量子热电输运有助于我们探测微纳尺度下粒子输运的性质,帮助寻找高热导的材料以开发全新的散热器件。本文首先讨论描述各种介观或者纳米系统中的稳态输运性质和纳米尺度下热-功转换的基本问题,并详细介绍了量子热机和热电器件的理论和实验进展。而在计算模型和方法上,主要利用Landauer-Buttiker公式及平衡和非平衡格林函数理论,研究多自由度介观系统的非平衡统计、输运等,将非平衡统计物理、开放量子系统和量子光学有机融合起来,并与最新的实验进展相互结合。具体内容如下:一、热电合作效应可以提高量子三端口量子热机的能量效率和功率。通过考虑量子点的弹性隧穿,我们研究了三端量子热机的效率和功率,在三端几何结构的推动下,三端量子热机可以同时在两个通道中产生电流的同时,只有一个热电流被利用。这两个通道中的电流可以根据他们的信号以相消或者相干的方式叠加。电流之间的相干叠加提高了热机的效率和功率,我们将这种相干增强称之为合作效应,此种理论在三端口系统的能量获取具有普适性。二、建立了具有两个独立输出电流和一个输入热电流的三端口量子热机的最佳效率和功率理论。首先我们推导出破缺时间反演对称性下具有多个输出电流的三端量子热机的最大效率、功率以及它们之间的权衡关系。利用此公式,我们计算了基于各种物理参数下的量子点三端口热机的最大效率和功率。通过具体的数值计算结果,我们发现采用两个输出电流的装置超越了传统的只有一个输出电流的量子热机,可以大幅度地扩大量子热机的参数范围,进一步提高效率和功率,从而为实现高性能热电器件提供了有效的途径。三、三端量子点电路量子电动力学系统作为热电二极管和晶体管。基于量子点电路量子电动力学系统中的最新突破,从量子光学器件的角度出发,实现了在热电装置领域的应用。使用Keldysh非平衡格林函数方法证明了腔耦合双量子点系统可以作为优良的量子热电二极管和晶体管。基于精确极化子变换的二阶微扰方法,我们发现热电输运性质对电子-光子相互作用的依赖性超出了传统二阶微扰理论的预测。我们证明了放置在有限偏置电压下与超导腔量子电动力学结构集成的量子点系统,由于强光-物质相互作用导致了显著的电整流和Peltier整流效应。由于光子辅助的非弹性输运,我们进一步发现了在线性响应区域内的热晶体管效应,这为量子热电器件开辟了一个前沿领域。四、在量子点电路量子电动力学系统中实现光子增益。利用Keldysh非平衡格林函数方法,我们研究了耦合到量子点系统的非平衡微波光子腔的光子和电子特性,证明了在线性响应区域,双量子点系统可以作为微腔光子的增益媒介,通过对谱函数、传输函数和相位响应的计算,发现电子-声子和电子-电子相互作用可以提高光子增益,并近一步阐明了这种效应是实现光子源量子器件的关键,为实现光子传输和放大提供了具体的方向。最后我们总结了本论文的研究工作,并简要讨论了下一步的工作方向。