论文部分内容阅读
离子整流(Ion-Current Rectification,ICR)为近年来新兴的研究热点,其表现为一个电压极性下所记录到的电流信号高于另一电压极性不同但电压绝对值相同下所记录到的电流信号,其电压-电流曲线类似于固体型整流二极管的电压-电流曲线。基于目前对离子整流的认识,管道形状,表面电荷密度,电渗流,扫速,压力等对孔道内离子的迁移均起到一定的促进与阻碍作用,都会影响整流的效率。而孔道内的离子分布不均匀与整流息息相关,即孔道内离子的分布不均等是造成整流的直接原因。现有的活体电分析化学方法主要是基于活体原位分析方法和活体在线分析方法,其研究对象多为具有电化学活性的物质。本文基于聚电解质功能化的微米管整流,设计和发展了新型的整流型传感器,该类型传感器灵敏度高,专一性强,可应用于非电化学活性的物质检测,所以在活体检测方面具有独特优势。现取得的主要研究结果如下:(1)基于聚咪唑修饰的玻璃管微米管整流研究。本工作将聚咪唑修饰在微米管内表面,该种聚合物刷在不同的pH条件下带有不同量的电荷,通过pH的调节可研究表面电荷密度对整流的影响。以此为基础,该体系详细探究了电极的稳定性,可逆性,以及在不同扫速下整流的变化情况。并尝试利用三层理论模型对咪唑基修饰的微米管玻璃电极的整流现象做出合理的解释。随着微米管整流的理论的完善和发展,为微米管整流在活体应用方面提供了更多的参考。(2)基于聚咪唑修饰的微米管的pH传感器。在对聚咪唑修饰的微米管整流进行细致的研究后,发现其在人工脑脊液的溶液中具有良好的pH响应。所以可设计一种基于聚咪唑修饰的微米管pH电极用于鼠脑内pH的检测。但是传统的循环伏安法作为整流的检测方法来讲,时间分辨率过于低。基于此,本体系设计了一种结合电压控制和微米管整流的高时间分辨率pH电化学传感器应用于鼠脑内时pH的实时在线检测。该电极具有良好的稳定性,可重复性及专一性。在鼠脑的pH检测中,利用二氧化碳缺氧模型,发现了该电极具有良好的响应灵敏度和高的时间分辨率,可广泛用于活体分析的pH检测。(3)基于咪唑阳离子功能化微米管整流的ATP(腺嘌呤核苷三磷酸)传感器。在对微米玻璃管内表面进行咪唑阳离子的修饰后,得到了具有整流现象的玻璃微米管电极。使其表面吸附ATP核酸适配体后,可利用咪唑阳离子和ATP核酸适配体的双识别元件对ATP分子进行识别。由于该电极拥有良好的专一性,可将其应用于鼠脑内ATP浓度的检测。将比电极的检测区间与鼠脑内ATP浓度进行比对,发现此咪唑阳离子修饰的整流型电极具有合适的检测区间。而且,双识别元件可排除脑内的生理活性分子和ATP类似物的干扰,对ATP分子具有极高的专一性。此种新型的整流型传感器的设计很好的解决了复杂环境下鼠脑脑脊液中的ATP直接测定问题。