论文部分内容阅读
电子密度、电流密度及其分布是研究托卡马克装置等离子体约束和输运、MHD(magnetohydrodynamic)不稳定性等行为的关键参数。电子密度、电流密度的有效测量和分布的获得对托卡马克装置实验至关重要。 远红外激光诊断系统是托卡马克装置测量等离子体线积分电子密度和法拉第旋转角的有效方法,利用测得的数据再结合适当的反演方法,可以给出等离子体电子密度分布和磁场信息。目前,在东方超环EAST(Experimental Advanced Superconducting Tokamak)上有两套可以测量等离子体线积分电子密度的诊断,包括氰化氢(HCN)干涉仪系统和POINT(polarimeter/interferometer)偏振干涉仪系统,分别测量垂直(3道)和水平(11道)方向的线积分电子密度值。此外,POINT系统还可以测量等离子体的法拉第旋转信息。 EAST装置偏振干涉仪系统发展经历了两个阶段。2015年之前,POINT系统包含5道测量道。利用该系统测得的线积分电子密度数据,结合EAST装置上微波反射仪系统测得的边界电子密度剖面,发展了一套基于PARK矩阵(PARK-matrix)方法的密度反演程序,获得了准确的电子密度分布。2015年以后,POINT系统测量道增加到11道,本文基于升级后的系统对密度反演方法进行了进一步的升级和优化。特别是通过对微波反射仪系统数据和POINT系统数据的标定与统计,获得了在等离子体边界POINT系统测量道无法覆盖的区域的线积分电子密度值与POINT系统第一和第十一两道测量值之间的系数关系,利用这个系数关系对电子密度反演过程中边界区域部分的电子密度剖面加强了约束。在升级的密度反演程序中,密度的输入数据减少为仅需要POINT诊断系统提供,同时保证了计算结果的精度。此外,计算过程中优化了密度剖面反演程序中数据的输入步骤,对实验数据中存在的零漂、诊断数据缺失等都进行了考虑,使整个程序更加的便捷和人性化。 在EAST装置发展高参数运行过程中,利用获得的高时间分辨率、高精度的电子密度分布,研究了内部输运垒(internal transport barrier,ITB)形成和崩塌过程中密度剖面的变化。将密度对位置进行求导处理,进一步定量地研究了这一物理现象的发生和发展过程,为内部输运垒的研究提供了重要的支持。 从高时间分辨率、高精度的电子密度分布出发,进一步完善了EAST装置上电流密度分布反演,获得了更加精确的电流密度分布结果。通过外部磁测量得到的数据结合EFIT(equilibrium fit)平衡反演程序可以给出初始的等离子体磁面和电流密度分布信息,再通过加入POINT系统测量的法拉第旋转信息,可以对芯部区域的等离子体信息进行补充和完善,进一步加强约束,提高计算结果的精度。对于修正方法里面极向磁通(磁场)的修正过程,不依赖EFIT程序进行迭代,而是更加关注局域区域的修正。 在EAST装置上开展的高归一化比压的物理实验中,利用POINT系统的数据对ITB形成和崩塌过程中电子密度分布进行了演化,同时用法拉第旋转信息对安全因子(q)剖面进行了约束,结合试验中特殊的物理现象——锯齿和鱼骨模不稳定性,对修正后的安全因子剖面进行了校核,结果显示,计算结果与对应的物理现象可以很好地吻合,验证了该方法的可行性。