复杂背景下的自适应恒虚警率检测技术研究

来源 :西安电子科技大学 | 被引量 : 0次 | 上传用户:mumuduck
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
恒虚警率处理作为雷达系统中实现自动目标检测的重要技术手段,是当今雷达信号处理领域中不可或缺的一部分。雷达工作的电磁环境随着军用、民用无线电技术的快速发展和应用而变得日益复杂,其对目标检测方法的性能要求也在不断提高。最早被提出的经典恒虚警率处理方法由于不具备自适应的特性,在复杂的背景环境中往往无法保持良好的检测性能。因此,如何根据参考单元的样本特性自适应的计算检测门限就成为了恒虚警率方法研究的主要方向。本文主要对复杂背景下的自适应恒虚警率算法展开了研究。本文首先对固定门限检测、单元平均恒虚警率方法、单元平均选大恒虚警率方法、单元平均选小恒虚警率方法以及有序统计恒虚警率处理方法进行了理论推导和分析,为后文的自适应恒虚警检测技术打下了基础。本文其次重点对非均匀杂波估计恒虚警率方法和变化指数恒虚警率方法这两种常见的自适应恒虚警率方法进行了理论推导和分析研究,并简要介绍了删除恒虚警率算法、自适应长度恒虚警率方法和剔除平均恒虚警率方法的原理,优缺点以及适用环境。针对变化指数恒虚警率方法在复杂多目标环境下检测性能下降的问题,本文结合删除恒虚警率算法和非均匀杂波估计恒虚警率方法提出了一种改进方法,该方法在没有过多的增加运算量的情况下成功的实现了改进的非均匀杂波估计恒虚警率方法和删除恒虚警率方法在变化指数恒虚警率检测中的应用。仿真结果证明新方法在均匀环境和杂波边缘环境性能没有恶化的情况下很大程度上改善了变化指数恒虚警率方法在多目标环境下的检测性能。本文最后提出了一种改进的变化指数恒虚警率方法,该方法将变化指数恒虚警方法与自适应长度恒虚警率方法相结合,采用两级变化指数判决和一级均值比判决的多级流程处理方式,自适应的对参与运算的参考单元进行选择,改善了变化指数恒虚警率方法在多目标环境下的性能。该方法以单元平均和单元平均选大为核心恒虚警算法,以统计量判决为辅助工具,通过对均匀环境或非均匀的复杂环境进行多级判决和处理,尽可能多的保留参考窗中属于均匀环境的采样值,自适应的选择检测门限的计算方式与参数计算检测门限。仿真结果表明,该改进方法在均匀环境中有比改进前更好的检测能力,杂波边缘环境虚警控制与改进前处于同一量级,复杂多目标环境下检测性能显著增强,证明了本文提出的方法能够有效的提高复杂场景下的目标检测性能,并且在复杂背景中有较强的鲁棒性。
其他文献
随着科技的发展与社会的进步,计算机数字化时代的到来也带来了图像的数字化时代。图像作为我们日常生活中接触最多的信息,它的质量决定了人们对信息理解的准确度,因此高质量的图像在生活中十分重要。然而,由于图像在获取、传输、压缩的过程中都有可能受到噪声等因素的影响,造成图像不同程度的损坏,因此针对损坏图像的修复以及重建技术成为数字图像处理中的重点研究内容。图像修复技术就是利用图像中的已知信息来对图像中的未知
随着社会的快速发展,计算机技术在当今社会的重要性日益提高。在计算机技术人才的培养过程中,实验教学是非常重要的一部分。而实验教学平台会极大地影响实验教学的效果,目前很多高校所使用的实验教学平台都存在一定的局限性,比如有的平台缺乏对实验环境多样性的支持;有的平台服务能力难以扩展,使用人数较多时会受到较大的限制;有的平台无法满足用户的多样性需求,导致用户体验不够良好等。因此本文针对现有实验平台存在的一些
高分辨率遥感图像场景分类是遥感技术的重要应用,近些年来在自然灾害检测、环境监测和城市规划等诸多领域中发挥着越来越重要的作用。特征提取是遥感图像场景分类中的关键一步,当前以卷积神经网络为代表的深度学习方法能够自动提取图像特征、利用大量样本进行端到端的训练与预测,分类性能相比传统场景分类方法有了显著提高。然而,现有的深度场景分类方法多以层次化卷积获得判别场景的图像语义,所提取的特征信息单一,缺乏对关键
自组织网络是一种无中心节点的分布式网络,其具有快速组网、灵活部署、抗毁能力强等优点,在军事行动、抢险救灾等方面应用广泛。传输控制协议(Transmission Control Protocol,TCP)是IP网络中一种典型的端到端传输协议,其能够在有线网络中提供高吞吐量的可靠传输。然而,在自组织网络中,无线信道时变且易受干扰、节点快速移动导致网络拓扑的动态变化及多跳传输带来的时延问题,使得TCP并
随着虚拟现实设备的进一步普及,人们越来越追求更具沉浸感的视觉体验,点云作为三维场景的主要表示方式,被视为下一代沉浸式媒体中最为关键的内容之一。现有的三维激光扫描设备可以轻易获得高精度的点云模型,海量的点云数据在为用户提供细腻逼真的场景呈现的同时,也为传输带宽和存储空间带来了更大的压力,因此针对点云数据压缩算法的研究是非常必要的。然而,当前常用的静态点云压缩方案并没有充分考虑到点云模型自身在三维空间
随着无线通信技术的发展,电子设备种类与数量不断增加,导致电磁环境日益复杂。接收机作为电子通信系统的核心设备,其内部包含放大器、混频器等各种非线性器件。干扰信号会使接收机产生增益压缩、互调等非线性效应;宽频带、非恒包络的调制信号使接收机记忆效应更为显著,进而影响接收机非线性效应,导致接收信号失真。因此,开展接收机非线性效应研究,构建接收机非线性行为模型,预测接收机非线性响应,对复杂电磁环境下接收机的
近年来,人口老龄化程度加剧导致老年人口规模膨胀,如何满足数量不断增加的老年人和肢体残疾的人群在室内自由活动的需求和出行需求是当前急需解决的问题。传统的电动轮椅对使用者来说操作难度较大,学习成本较高,且在行进过程中容易发生碰撞。针对上述问题,本文对智能轮椅构建室内环境地图及自主导航过程中涉及的问题进行了研究。论文的研究内容主要包括以下几个方面:首先,利用激光雷达同步定位与建图(Simultaneou
物联网旨在实现万物互联,提供无处不在的服务,支撑着智慧城市、智能家居、工业控制等领域。海量物联网数据接入和分布式服务提供是其广泛应用的核心技术。针对物联网海量设备差异化、通信协议多样化、数据格式私有化、服务提供组合化等导致了物联网数据接入复杂度高、服务组合提供难度大的问题,本文聚焦于异构物联网数据的快速接入和多域物联网服务组合提供方法,设计并实现了物联网平台数据接入和服务提供系统。针对海量异构设备
合成孔径雷达(SAR)作为一种主动式的对地观测系统,可安装在飞机、卫星、宇宙飞船等飞行平台上,全天时、全天候获取遥感数据,分辨率高,且穿透力和存活力极强,因而被广泛应用于军事和民用领域。作为一种独特的侦察手段,SAR在军事领域最主要的应用是实现对特定军事目标的检测和识别,推动军事战场的信息化、现代化以及高效化。因此如何实现SAR图像目标识别具有重要的理论和实践意义。近年来,计算机硬件性能飞速提升,
随着科技水平的发展,水下探测已经成为世界范围内一项重要的科学探测工作。水下光学成像是开展水下科探的重要手段之一,其图像质量是影响探测成效的关键因素。然而,复杂的水体环境致使水下物体成像时受悬浮颗粒吸收和散射作用影响,形成模糊的边界与较低的对比度,水中物体难以被辨认,同时呈现不同程度的蓝绿色偏,不能反映水下物体的真实样貌,也为后续一些图像处理高级任务带来困难。水下图像复原处理能够提升这类图像的清晰程