钢包透气塞用刚玉质耐火材料的设计制备和断裂过程表征及服役模拟

来源 :武汉科技大学 | 被引量 : 1次 | 上传用户:zjj008
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
刚玉质耐火材料是精炼钢包透气塞的首选材质,其高温服役环境异常恶劣,热端温度可高达1650-1700℃,冷、热端面的温差超过1000℃,长时间承受浇钢和出钢的反复冷热循环冲击,最终引起材料热机械损毁。随着钢水炉外精炼比例增加,透气塞使用寿命大幅度降低,导致生产中需要频繁的更换和维修,影响了炉外精炼工艺的节奏,也威胁着钢包在线周转和生产安全。因此,进一步改善刚玉质耐火材料的抗热震性,延长透气塞服役寿命,从而提升钢包精炼效率和安全生产是目前冶金工作者的重要任务之一。
  目前,研究者通过引入氧化镁、氧化锆等组分来改善刚玉质耐火材料的抗热震性,但提升空间受限;其次,以往受实验条件限制,常采用传统的水淬冷法测定材料的强度保持率来表征刚玉质耐火材料的抗热震性,而对刚玉质耐火材料真实断裂过程缺少科学地评价,也无法获取与材料抗热震因子相关联的断裂参数,对刚玉质耐火材料内部存在的多尺度裂纹关注也更少;最后,对真实服役条件下刚玉质耐火材料的损毁机制也仅从用后材料分析判断。
  针对上述问题,本论文首先从Al2O3-CaO二元系中选取片状六铝酸钙相(CaO·6Al2O3,简称CA6)和低热膨胀系数的二铝酸钙(CaO·2Al2O3,简称CA2)开展刚玉质耐火材料的微结构调控研究,具体包括:①在刚玉质耐火材料的基质内设计含CA。相和CA2相的微结构(含量、形貌、分布);②在刚玉质耐火材料中引入不同粒度的六铝酸钙骨料取代部分刚玉骨料,旨在设计与制备具有高抗热震性的透气塞用刚玉质耐火材料。其次,采用楔形劈裂技术、数字图像相关技术及反演算优化技术,系统地研究了张应力作用下材料的裂纹扩展过程,获取了真实的断裂能、拉伸强度等断裂参数,探明了刚玉质耐火材料的断裂机理。最后,采用数值仿真技术系统研究了刚玉质耐火材料在实际服役工况下的损毁机制,为优化透气塞材料的开发提供理论依据,具体包括:①采用扩展有限元法研究刚玉质耐火材料裂纹尖端的应力强度因子K,揭示材料承载能力与初始裂纹尺寸的作用规律;②基于热固耦合模型,以真实透气塞结构为分析对象,研究透气塞服役过程中材料属性与温度场及热应力场的相关性。
  通过上述的研究工作,得到如下主要结论:
  1.刚玉质耐火材料制备过程中通过控制结合剂铝酸盐水泥含量,可以成功地设计相组成和微结构,改善刚玉质耐火材料的力学性能和抗热震性。在高温处理(1600℃)后,当水泥含量从1 wt%增加到10 wt%时,CA6相在材料内原位生成并且其数量增多,其分布从基质向骨料蔓延,其形貌从板状向等轴状转变,互锁状齿合结构逐渐形成,使得冷态和热态抗折强度逐渐增加;当水泥含量从10 wt%增加到15 wt%时,CA2相在材料中原位生成,CA6相逐渐减少,形成了包裹刚玉骨料的CA6/CA2梯度反应层(内层CA6,外层CA2),较好地吸收了热应力,提升了刚玉质耐火材料的抗热震性能。
  2.通过引入不同粒度的六铝酸钙骨料,可以显著改善骨料与基质界面特性,成功制备高抗热震性刚玉质耐火材料。将5-3、3-1、1-0 mm的CA6颗粒单独或同时替代板状刚玉骨料制备刚玉质耐火材料,显著降低了材料的热膨胀系数,改善了材料的微结构,使得刚玉质耐火材料常温及中高温强度获得显著提升;其中,三种CA6骨料同时取代的刚玉质耐火材料界面结合最优,与未添加CA6的材料相比,高温热处理后,冷态和热态抗折强度分别提升了4.7%和10.8%。
  3.借助楔形劈裂技术、数字图像相关技术及反演算优化技术,定量表征了张应力作用下刚玉质耐火材料的断裂机理。在刚玉质耐火材料中添加高含量水泥(15 wt%)或同时引入三种粒度的CA6颗粒(5-3、3-1、1-0 mm),增加了材料断裂过程中内部裂纹扩展的曲折路径及耗散能量,使得材料断裂能、特征长度增大,x方向上的应变最高、主裂纹最长,提高了材料抵抗裂纹扩展的能力;刚玉质耐火材料抵抗裂纹扩展的能力与裂纹扩展路径(骨料、基质和界面)直接相关,骨料内扩展比例越大,抵抗裂纹扩展能力越弱,其中含三个粒度CA6的刚玉质耐火材料具有最优抵抗裂纹扩展能力。
  4.利用扩展有限元法和线弹性本构关系,探明了刚玉质耐火材料极限承载能力与初始裂纹长度之间的内在规律。刚玉质耐火材料在受张应力作用时,在相同初始裂纹尺寸下,材料裂纹尖端应力强度因子K与外部载荷呈线性相关;在相同外部载荷条件下,裂纹尖端应力强度因子K与初始裂纹尺寸平方根呈线性相关;刚玉质耐火材料承受的极限载荷与初始裂纹尺寸呈反相关。
  5.真实服役工况下透气塞的最大热应力发生在浇钢瞬间及吹氩阶段,其损毁发生在上部热端面,含三个粒度六铝酸钙骨料的刚玉质耐火材料降低了透气塞内部温度差及热应力。导致透气塞内部较大温度梯度的主要原因是装钢运输开始阶段的钢水热冲击及吹氩阶段低温氩气与高温透气塞的强制换热,狭缝式透气塞损毁的主要位置在Y=0.323 m以上截面;材料的热导率及热膨胀系数分别对其内部的温度场和热应力场敏感度最高:含三个粒度CA6的刚玉质耐火材料结构内部温度场和热应力场分布最优,能有效提高狭缝式透气塞的服役寿命。
其他文献
沧海桑田人文变迁,我国如今已位列世界之巅,还记得曾经辉煌岁月的中国,名震八方光辉万丈的文明发源地,诞生了如同神来之笔的指南针技术、造纸术、火药和印刷技术的东方大地,一下子打开了全世界通往新天地的大门,中国劳动人民的智慧结晶引领了过去几千年的技术文化过渡到新时期,也将世界文明的发展推到一个巅峰。马克思之前这样表述:火药、指南计、印刷术——三大技术象征着资产阶级社会悄然来袭。火药的爆炸来袭十分震撼,指
光缆作为一种传输和传感元件在光纤通信和光纤传感领域以自身独特的优势占据不可替代的地位,近几年,随着分布式光纤传感技术在工程领域的广泛推广和使用,光缆的种类随着工程环境的复杂多变也日益繁多,其传感性能也存在较大差异,一款合适的光缆是保证应变和温度等参数精确测量的关键。分布式应变光缆在工程应变监测中造成测量误差的原因除测量系统自身精度外,主要受光缆的封装材料和结构的不同造成。本文针对不同封装应变光缆在
空间和偏振自由度的不可分离性是复杂矢量光场的重要特性之一,其横向偏振分布的不均匀性和空间自由度的无限维度等特性,能够在粒子操控、多自由度量子存储和量子密钥分发编码等领域具有广泛的潜在应用。然而,传统矢量光场的应用研究多采用柱对称矢量光束,这种单一层次的研究在一定程度上局限了光场调控发展的维度,且增加了研究成本。对于复杂矢量光场的产生,目前多采用仅对横向偏振光敏感的空间光调制器作为调制器件,产生的矢
近年来,利用多媒体工具在公共网络传输信息的方式越来越受人们的欢迎,随之出现多种信息传输的方式,给如今的生活带来很大的便利。在多种信息传输方式中图像信息因其具有形象直观的特点,在政治、军事、医学及人们的日常生活中具有广泛的应用。图像在传递过程中如何保障图像信息不被恶意攻击盗取、破坏的安全问题也更加值得我们关注。因此,对图像进行加密成为现在研究的热点与重点。现如今各个领域对信息传输效率的要求越来越高,
在众多种类的微量元素中,铜离子作为一种常见的重金属离子,对各种生命活动起着十分重要的调控功能,但铜离子的摄入量超标时,人体中正常的新陈代谢将会受到严重的干扰,因此对自然生态系统中的铜离子浓度进行检测格外重要。在众多的检测方法中,光纤传感器因为具有检测极限高、制备流程简单、耐腐蚀抗氧化等优点而被广泛关注。在众多的光纤传感原理中,基于Mach-Zehnder干涉原理的光纤传感器制备方法相对简单、结构更
温度在日常生活和工程应用中有重要的作用,尤其在化学试剂配制、生物蛋白活性与医学实验中的温度控制上,无毒害、抗电磁干扰和高灵敏度温度检测必不可少。由于光纤传感技术具有制造简单、体积小、成本低、稳定和抗电磁干扰等优点,受到了研究者的广泛关注,特别是基于法布里-珀罗干涉仪(FPI)的光纤传感器。近年来,聚二甲基硅氧烷(PDMS)热敏材料被应用于FPI传感器中,大幅提高了温度测量灵敏度。本文将PDMS热敏
高强度、宽频谱的超短脉冲作为超强和超快的光以及超准的光钟,其应用不断深入各研究领域,成为帮助人们探寻强电磁场下物化过程、发现并探究微观世界变化以及实现精密测量等方面研究的有效科学工具。超短脉冲的出现扩展了倍频的研究,不同于单色激光的倍频,宽光谱倍频需要同时满足相位匹配和群速度匹配,波前匹配方法是实现宽光谱倍频的有效手段,能够在保证脉冲质量的前提下,提高转换效率。采用波动光学与几何光学相结合的方法,
局域表面等离子体共振(Localized Surface Plasmon Resonance,LSPR)是金属纳米材料光频性质之一,可通过其调控光与物质间的相互作用特性,设计各种功能的器件,近些年来受到人们的广泛关注。在众多金属纳米材料中,Ag纳米材料因其局域电场增强能力而备受瞩目,可广泛应用于生物传感器、光电器件和新能源等领域。本论文通过理论仿真与实验相结合的方法对Ag纳米结构及其聚合物复合薄膜
2μm波段激光处于人眼安全和大气窗口,同时也处于大气中多种气体分子指纹图谱区域,因此其在医疗手术、信息传输、气体检测、激光雷达、工业加工等方面有着普遍的应用。近年来,随着激光技术的快速发展,采用二极管LD泵浦单掺Tm3+激光介质实现新型2μm波段激光成为激光领域研究的热点。本文以Tm:YAP晶体为激光器增益介质,并以MoSe_2/WSe_2材料为可饱和吸收体,深入研究被动调Q模式下Tm:YAP激光
微结构光纤广泛应用在环境监测、食品安全、化学、生物医学等领域;湿敏材料氧化石墨烯(Graphene Oxide,GO)可以通过吸附水分子改变自身折射率来达到对光波导器件的增敏作用,在基于表面等离子体共振(Surface Plasmon Resonance,SPR)中还可以保护金属层不被氧化。与现有的光纤湿度传感器相对比,本论文以湿敏材料GO、马赫曾德(Mach-Zehnder,M-Z)传感单元的研