论文部分内容阅读
刚玉质耐火材料是精炼钢包透气塞的首选材质,其高温服役环境异常恶劣,热端温度可高达1650-1700℃,冷、热端面的温差超过1000℃,长时间承受浇钢和出钢的反复冷热循环冲击,最终引起材料热机械损毁。随着钢水炉外精炼比例增加,透气塞使用寿命大幅度降低,导致生产中需要频繁的更换和维修,影响了炉外精炼工艺的节奏,也威胁着钢包在线周转和生产安全。因此,进一步改善刚玉质耐火材料的抗热震性,延长透气塞服役寿命,从而提升钢包精炼效率和安全生产是目前冶金工作者的重要任务之一。
目前,研究者通过引入氧化镁、氧化锆等组分来改善刚玉质耐火材料的抗热震性,但提升空间受限;其次,以往受实验条件限制,常采用传统的水淬冷法测定材料的强度保持率来表征刚玉质耐火材料的抗热震性,而对刚玉质耐火材料真实断裂过程缺少科学地评价,也无法获取与材料抗热震因子相关联的断裂参数,对刚玉质耐火材料内部存在的多尺度裂纹关注也更少;最后,对真实服役条件下刚玉质耐火材料的损毁机制也仅从用后材料分析判断。
针对上述问题,本论文首先从Al2O3-CaO二元系中选取片状六铝酸钙相(CaO·6Al2O3,简称CA6)和低热膨胀系数的二铝酸钙(CaO·2Al2O3,简称CA2)开展刚玉质耐火材料的微结构调控研究,具体包括:①在刚玉质耐火材料的基质内设计含CA。相和CA2相的微结构(含量、形貌、分布);②在刚玉质耐火材料中引入不同粒度的六铝酸钙骨料取代部分刚玉骨料,旨在设计与制备具有高抗热震性的透气塞用刚玉质耐火材料。其次,采用楔形劈裂技术、数字图像相关技术及反演算优化技术,系统地研究了张应力作用下材料的裂纹扩展过程,获取了真实的断裂能、拉伸强度等断裂参数,探明了刚玉质耐火材料的断裂机理。最后,采用数值仿真技术系统研究了刚玉质耐火材料在实际服役工况下的损毁机制,为优化透气塞材料的开发提供理论依据,具体包括:①采用扩展有限元法研究刚玉质耐火材料裂纹尖端的应力强度因子K,揭示材料承载能力与初始裂纹尺寸的作用规律;②基于热固耦合模型,以真实透气塞结构为分析对象,研究透气塞服役过程中材料属性与温度场及热应力场的相关性。
通过上述的研究工作,得到如下主要结论:
1.刚玉质耐火材料制备过程中通过控制结合剂铝酸盐水泥含量,可以成功地设计相组成和微结构,改善刚玉质耐火材料的力学性能和抗热震性。在高温处理(1600℃)后,当水泥含量从1 wt%增加到10 wt%时,CA6相在材料内原位生成并且其数量增多,其分布从基质向骨料蔓延,其形貌从板状向等轴状转变,互锁状齿合结构逐渐形成,使得冷态和热态抗折强度逐渐增加;当水泥含量从10 wt%增加到15 wt%时,CA2相在材料中原位生成,CA6相逐渐减少,形成了包裹刚玉骨料的CA6/CA2梯度反应层(内层CA6,外层CA2),较好地吸收了热应力,提升了刚玉质耐火材料的抗热震性能。
2.通过引入不同粒度的六铝酸钙骨料,可以显著改善骨料与基质界面特性,成功制备高抗热震性刚玉质耐火材料。将5-3、3-1、1-0 mm的CA6颗粒单独或同时替代板状刚玉骨料制备刚玉质耐火材料,显著降低了材料的热膨胀系数,改善了材料的微结构,使得刚玉质耐火材料常温及中高温强度获得显著提升;其中,三种CA6骨料同时取代的刚玉质耐火材料界面结合最优,与未添加CA6的材料相比,高温热处理后,冷态和热态抗折强度分别提升了4.7%和10.8%。
3.借助楔形劈裂技术、数字图像相关技术及反演算优化技术,定量表征了张应力作用下刚玉质耐火材料的断裂机理。在刚玉质耐火材料中添加高含量水泥(15 wt%)或同时引入三种粒度的CA6颗粒(5-3、3-1、1-0 mm),增加了材料断裂过程中内部裂纹扩展的曲折路径及耗散能量,使得材料断裂能、特征长度增大,x方向上的应变最高、主裂纹最长,提高了材料抵抗裂纹扩展的能力;刚玉质耐火材料抵抗裂纹扩展的能力与裂纹扩展路径(骨料、基质和界面)直接相关,骨料内扩展比例越大,抵抗裂纹扩展能力越弱,其中含三个粒度CA6的刚玉质耐火材料具有最优抵抗裂纹扩展能力。
4.利用扩展有限元法和线弹性本构关系,探明了刚玉质耐火材料极限承载能力与初始裂纹长度之间的内在规律。刚玉质耐火材料在受张应力作用时,在相同初始裂纹尺寸下,材料裂纹尖端应力强度因子K与外部载荷呈线性相关;在相同外部载荷条件下,裂纹尖端应力强度因子K与初始裂纹尺寸平方根呈线性相关;刚玉质耐火材料承受的极限载荷与初始裂纹尺寸呈反相关。
5.真实服役工况下透气塞的最大热应力发生在浇钢瞬间及吹氩阶段,其损毁发生在上部热端面,含三个粒度六铝酸钙骨料的刚玉质耐火材料降低了透气塞内部温度差及热应力。导致透气塞内部较大温度梯度的主要原因是装钢运输开始阶段的钢水热冲击及吹氩阶段低温氩气与高温透气塞的强制换热,狭缝式透气塞损毁的主要位置在Y=0.323 m以上截面;材料的热导率及热膨胀系数分别对其内部的温度场和热应力场敏感度最高:含三个粒度CA6的刚玉质耐火材料结构内部温度场和热应力场分布最优,能有效提高狭缝式透气塞的服役寿命。
目前,研究者通过引入氧化镁、氧化锆等组分来改善刚玉质耐火材料的抗热震性,但提升空间受限;其次,以往受实验条件限制,常采用传统的水淬冷法测定材料的强度保持率来表征刚玉质耐火材料的抗热震性,而对刚玉质耐火材料真实断裂过程缺少科学地评价,也无法获取与材料抗热震因子相关联的断裂参数,对刚玉质耐火材料内部存在的多尺度裂纹关注也更少;最后,对真实服役条件下刚玉质耐火材料的损毁机制也仅从用后材料分析判断。
针对上述问题,本论文首先从Al2O3-CaO二元系中选取片状六铝酸钙相(CaO·6Al2O3,简称CA6)和低热膨胀系数的二铝酸钙(CaO·2Al2O3,简称CA2)开展刚玉质耐火材料的微结构调控研究,具体包括:①在刚玉质耐火材料的基质内设计含CA。相和CA2相的微结构(含量、形貌、分布);②在刚玉质耐火材料中引入不同粒度的六铝酸钙骨料取代部分刚玉骨料,旨在设计与制备具有高抗热震性的透气塞用刚玉质耐火材料。其次,采用楔形劈裂技术、数字图像相关技术及反演算优化技术,系统地研究了张应力作用下材料的裂纹扩展过程,获取了真实的断裂能、拉伸强度等断裂参数,探明了刚玉质耐火材料的断裂机理。最后,采用数值仿真技术系统研究了刚玉质耐火材料在实际服役工况下的损毁机制,为优化透气塞材料的开发提供理论依据,具体包括:①采用扩展有限元法研究刚玉质耐火材料裂纹尖端的应力强度因子K,揭示材料承载能力与初始裂纹尺寸的作用规律;②基于热固耦合模型,以真实透气塞结构为分析对象,研究透气塞服役过程中材料属性与温度场及热应力场的相关性。
通过上述的研究工作,得到如下主要结论:
1.刚玉质耐火材料制备过程中通过控制结合剂铝酸盐水泥含量,可以成功地设计相组成和微结构,改善刚玉质耐火材料的力学性能和抗热震性。在高温处理(1600℃)后,当水泥含量从1 wt%增加到10 wt%时,CA6相在材料内原位生成并且其数量增多,其分布从基质向骨料蔓延,其形貌从板状向等轴状转变,互锁状齿合结构逐渐形成,使得冷态和热态抗折强度逐渐增加;当水泥含量从10 wt%增加到15 wt%时,CA2相在材料中原位生成,CA6相逐渐减少,形成了包裹刚玉骨料的CA6/CA2梯度反应层(内层CA6,外层CA2),较好地吸收了热应力,提升了刚玉质耐火材料的抗热震性能。
2.通过引入不同粒度的六铝酸钙骨料,可以显著改善骨料与基质界面特性,成功制备高抗热震性刚玉质耐火材料。将5-3、3-1、1-0 mm的CA6颗粒单独或同时替代板状刚玉骨料制备刚玉质耐火材料,显著降低了材料的热膨胀系数,改善了材料的微结构,使得刚玉质耐火材料常温及中高温强度获得显著提升;其中,三种CA6骨料同时取代的刚玉质耐火材料界面结合最优,与未添加CA6的材料相比,高温热处理后,冷态和热态抗折强度分别提升了4.7%和10.8%。
3.借助楔形劈裂技术、数字图像相关技术及反演算优化技术,定量表征了张应力作用下刚玉质耐火材料的断裂机理。在刚玉质耐火材料中添加高含量水泥(15 wt%)或同时引入三种粒度的CA6颗粒(5-3、3-1、1-0 mm),增加了材料断裂过程中内部裂纹扩展的曲折路径及耗散能量,使得材料断裂能、特征长度增大,x方向上的应变最高、主裂纹最长,提高了材料抵抗裂纹扩展的能力;刚玉质耐火材料抵抗裂纹扩展的能力与裂纹扩展路径(骨料、基质和界面)直接相关,骨料内扩展比例越大,抵抗裂纹扩展能力越弱,其中含三个粒度CA6的刚玉质耐火材料具有最优抵抗裂纹扩展能力。
4.利用扩展有限元法和线弹性本构关系,探明了刚玉质耐火材料极限承载能力与初始裂纹长度之间的内在规律。刚玉质耐火材料在受张应力作用时,在相同初始裂纹尺寸下,材料裂纹尖端应力强度因子K与外部载荷呈线性相关;在相同外部载荷条件下,裂纹尖端应力强度因子K与初始裂纹尺寸平方根呈线性相关;刚玉质耐火材料承受的极限载荷与初始裂纹尺寸呈反相关。
5.真实服役工况下透气塞的最大热应力发生在浇钢瞬间及吹氩阶段,其损毁发生在上部热端面,含三个粒度六铝酸钙骨料的刚玉质耐火材料降低了透气塞内部温度差及热应力。导致透气塞内部较大温度梯度的主要原因是装钢运输开始阶段的钢水热冲击及吹氩阶段低温氩气与高温透气塞的强制换热,狭缝式透气塞损毁的主要位置在Y=0.323 m以上截面;材料的热导率及热膨胀系数分别对其内部的温度场和热应力场敏感度最高:含三个粒度CA6的刚玉质耐火材料结构内部温度场和热应力场分布最优,能有效提高狭缝式透气塞的服役寿命。