论文部分内容阅读
微环谐振器被认为是未来光子集成回路或者光子计算机的基础性单元,可以实现诸如激光器、放大器、探测器、光学通道陷波器(OCDFs)、光学分插复用器(OADMs)、开关、路由器、逻辑门、光存储器、延时线等多种光学器件。本文主要研究了环形激光器相关的滤波和双稳态理论,并研制了基于光学双稳态和滤波的InP基环形激光器,验证了相关理论结果。创新性工作主要包括以下几个方面:1使用有限元方法系统地研究了半导体光波导的单模条件和耦合系数的计算这两个基本问题,将传输矩阵方法中耦合参数与脊型波导的具体结构结合起来,很大程度上弥补了传输矩阵方法的不足。2在环形激光器的滤波理论方面,提出了基于Spice的电路模型,并举例说明了该模型在双环和多环谐振器方面的应用。提出了多环谐振器的综合方法,使用该方法可以从一定滤波特性参数出发,计算得到每个环之间的耦合系数,再根据耦合系数和器件尺寸的关系得到具体的器件尺寸,从而实现光学滤波器从性能特性到器件尺寸设计的一整套完整的解决方案。3在环形激光器的双稳态理论方面,使用非线性数学方法系统地计算了背散射参数变化对环形激光器工作分区的影响,环形激光器将呈现不同的非线性动力学行为,包括分岔和混沌。并从物理角度对引发这些复杂的非线性运动的原因进行了分析和计算。4系统地研究了完美匹配层边界条件和周期性边界条件下的有限时域差分方法(FDTD),并将其用于环形滤波器的滤波特性和延时线特性的研究中,分析了单环、双环、多环滤波器的滤波特性以及无限长周期性结构的光子能带特性。5在器件研制方面,采用InP基InAlGaAs多量子阱激光器外延材料,利用感应耦合等离子体(ICP)干法刻蚀技术和聚酰亚胺介质平坦化工艺,研制了多量子阱半导体环形激光器样品。该器件通过加正偏压的环形结构谐振腔实现光激射,然后借助紧邻的直线波导耦合将光信号输出。使用扫描电子显微镜和原子力显微镜等多种测试手段证实了研制的激光器具有很好的性能,测试了其梳状滤波特性和双稳态特性,进一步验证了上面提出的环形激光器的滤波和双稳态理论。