氧化钨基纳米材料的制备及其光催化应用

来源 :广州大学 | 被引量 : 0次 | 上传用户:xiaocai_01
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着世界范围内不断增长的城市化和工业化,由有机污染物和重金属引起的水污染已成为威胁自然生态系统和人类健康的全球性问题。许多河流和地下水中的重金属含量超过了安全标准,尤其是六价铬Cr(Ⅵ)污染严重超标。光催化技术被视为有效去除废水中Cr(Ⅵ)的有效手段,其反应环境条件温和,能耗低,可直接通过太阳光将具有毒性大的Cr(Ⅵ)还原成具有毒性小且容易沉淀的Cr(Ⅲ),具有高效、清洁,绿色等特点。作为一种常见的n型氧化物半导体,WO3-x具有组分可调、电子结构独特以及表面氧空位丰富等特点,在可见光和近红外范围均表现出强的局域表面等离子体共振(LSPR)效应,被视为一种具有较强应用潜力的光催化剂。然而,传统单一的WO3-x光催化剂存在光生电子-空穴对易复合、热电子衰变等缺陷严重限制了其在光催化领域中的实际应用。因此,如何合理设计及修饰WO3-x主体材料以提升其载流子分离和热电子利用效率,是提高其光催化性能拟解决的关键挑战之一。本文通过合理调节变量以调控形貌以及复合其他半导体以构筑复合材料等策略设计、制备高效WO3-x基复合光催化纳米材料,主要研究内容如下:(1)以无水乙醇(EtOH)为溶剂和还原剂成功制备不同形貌的W18O49纳米材料。研究发现,通过调节前驱体WCl6的含量可得到纳米线(NW)、纳米束和海胆球等不同形貌和结构的产物。利用SEM、TEM、UV-vis-NIR消光光谱、EPR光谱、3D有限元模拟等表征手段对W18O49形貌、微观结构、光学性质、氧空位以及LSPR电场分布进行分析。模拟和实验结果都表明,W18O49材料的形貌和尺寸对LSPR效应有很大的影响。同时,对合成的W18O49纳米材料进行了光催化性能研究,实验证明,海胆球状W18O49在可见-近红外光下光催化还原Cr(Ⅵ)活性比纳米线提高了21.6%。增强的光催化性能主要是来自于海胆球状W18O49增强的LSPR效应和大的比表面积。(2)通过简便的溶剂热法在WO3纳米棒表面修饰超薄层状ZnIn2S4(简称ZIS)纳米片,成功制备了二元复合纳米材料。WO3和ZIS界面的内建电场有利于形成“Z-scheme结构”促进光生载流子分离效率提高。且复合材料的形成可原位诱导WO3产生更多表面氧空位,提升其在近红外光区的LSPR响应,并通过热电子向ZIS导带的快速注入实现热电子的稳定化和高效利用。针对Cr(Ⅵ)的光还原实验证实,该二元复合材料在可见光和近红外光下均展现出优异的光催化还原Cr(Ⅵ)能力,尤其是近红外光下复合材料的光还原效率相比单一WO3材料提高17.3倍,充分说明原位诱导的氧缺陷对材料性能提升的重要作用。
其他文献
本文研究带排斥调和势的非线性Schr(o|¨)dinger方程爆破解的动力学性质,得到了具小超临界质量爆破解爆破速率的上、下界估计.径向对称爆破解的爆破图景, L2-质量集中性质, L2-质量集中速率.特别地,利用集中紧引理得到爆破解的L2弱极限上界估计以及极小质量爆破解的极限行为.考虑如下的非线性Schr(o|¨)dinger方程其中ω为正参数;为RN上Laplace算子; u = u(t,x)
在能源危机和环境恶化的双重背景下,热电材料作为一种能源转换材料受到广大研究者的关注。在众多热电材料体系中,Zintl相Mg3Sb2化合物具有较高的Seebeck系数,较低的热导率,且其成本低廉,组成元素无毒无污染,是一种具有巨大应用潜力的热电材料。本论文从理论计算和实验方面,系统探索了Bi固溶和Pb掺杂对Mg3Sb2化合物的电、热传输性能的影响规律和调控机制,获得的主要结果如下:(1)基于密度泛函
低温变形后镁合金动态再结晶(DRX)晶粒细小,但DRX率较低,无法实现强度和塑性的良好匹配。针对此问题,本文基于微米SiCp能够促进镁合金DRX形核的思想,研究了颗粒周围变形区(PDZ)的形成机理,分析了高温压缩变形过程中微量SiCp及SiCp周围PDZ尺寸作用下Mg-5Zn合金的组织演变规律,阐明了SiCp及PDZ尺寸对Mg-5Zn合金DRX和动态析出行为的影响机制。在此基础上,研究微量SiCp
矿井自燃火灾防治的关键在于火源位置的精确探测,同位素测氡法因其操作简便、成本低、不受地形限制、适合深部火区探测等优点已广泛应用于自然发火严重区域的探测,但如何在地表通过获得准确的氡浓度异常信息来精准探测复杂状况下煤自燃火区是测氡技术所面临的关键技术挑战。目前地表氡异常信息的获取主要采用α杯法,该法易受季节、气象、日照、风力、仪器震动及其它人为因素的影响,制约现场数据的有效采集和准确分析。受煤自燃影
工程岩体是结构面和岩块的空间排列组合体。大量工程实践表明,工程岩体的变形破坏不只取决于岩石性质,更主要受结构面的影响。而所有类型的结构面中,节理在工程岩体中存在的概率相对来说要高得多。目前地下工程一般建在完整岩体或断续节理岩体中,断续节理的存在使围岩的稳定性、变形特征和应力分布更加复杂,围岩的破坏往往是由于裂纹在节理间扩展贯通导致的。因此研究断续节理围岩的变形破坏对于地下工程实践意义重大。本文基于
白光LED具有高效节能、无汞污染等优点,已经在生活照明、液晶显示、汽车照明等方面获得广泛应用,其中稀土发光材料是白光LED的关键成分之一。然而,对于许多应用型稀土发光材料,其晶体结构和化学组成比较复杂(例如,出现多格位占据、电荷补偿、无序占据等),与发光性质之间关系有待厘清。采用传统实验手段难以获得发光性质与配位环境之间关联的清晰认识;采用经验理论模型进行结构分析存在局限性。本论文以一些典型或具有
航空航天事业的快速发展迫切需要轻质耐高温的结构材料来替代Ni基高温合金,在此背景下,具有密度低、比强度高、服役温度高、结构稳定性好和抗氧化等优点的Ni-Al金属间化合物可作为优选材料以实现结构减重、高承温的目标。但由于其具有本征脆性,室温下塑韧性差,薄壁结构板材的制备较为困难,且在高温下单一相强度较低,基于此,本文试图通过引入塑性层来提高Ni-Al金属间化合物的高温强度及塑韧性,以制备出高性能的结
医用钛合金如Ti-6Al-4V(TC4)合金由于具有优异的机械性能以及良好的生物相容性常作为人体植入体的首选材料,被广泛应用于人体硬组织替代和修复。然而,钛合金长期在复杂的人体环境中,会释放有毒金属Al3+和V-离子进入周围组织,且本身的生物活性不佳限制了其应用。羟基磷灰石(HA)是人体和动物骨骼一种非常重要的无机组成成分,具有与天然骨骼相似的化学性、生物相容性和骨诱导性。但其强度低、韧性差、脆性
煤化工企业产生的高浓度难降解有机废水,产量日益增加,常规的生物化学处理工艺不能对其进行有效出理,造成了严重的环境问题。非均相臭氧催化氧化技术因其具有强氧化性、无二次污染等特点而被认为是深度处理煤化工废水的有效方法,但传统的单一价态金属氧化物型催化剂电子转移效率低,羟基自由基产量小。过渡金属复合氧化物具有多种价态的金属离子,能提高电子转移效率,改善催化活性,提高羟基自由基产量。因此,本论文选用价态多
近年来,由于发光材料被广泛应用于各个领域,其制备工艺及其光学特性的研究成为人们广泛关注的研究课题,其中对以Y2O2S为基质掺杂的发光材料的制备和光学性能的研究是材料物理研究的热点问题之一。由于S的熔点和沸点与Y2O3的差别很大,取得高质量Y2O2S非常困难。我们改进了固相反应工艺,在不添加任何助溶剂,不用石墨坩埚的情况下,直接使Y2O3和S高温汽固相反应而得到高质量的Y2O2S,避免了污染,简化了