论文部分内容阅读
结构明确的Grubbs钌卡宾催化剂,由于具有较高的催化活性、在空气中良好的稳定性和官能团忍受性,可以有效地催化环烯烃的开环易位聚合(ROMP)和链状二烯烃的非环二烯烃易位(ADMET)聚合。烯烃易位聚合已成为合成新型结构和优异性能的官能化聚合物极其有效的一种方法,近30年来一直是高分子合成领域的研究热点。本论文以ROMP和ADMET聚合方法为基础,合成不同结构和功能性的易位聚合物;同时,积极探索新的易位聚合反应,发现并提出了简便实用的“串联式ROMP-ADMET聚合”新方法,利用该方法合成了长链高度支化聚合物(LCHBP),并将其进一步转化为功能性聚合物纳米颗粒和杂化纳米材料。这对于丰富易位聚合研究的方法、思路和内容,具有重要的意义。论文的主要研究内容和结果如下:基于ROMP与“点击”化学联用,设计合成了含偶氮苯基团的多嵌段聚合物。在α,ω-二溴单烯烃小分子链转移剂(CTA)的参与下进行环辛二烯的开环易位聚合反应(ROMP-CT),得到遥爪型二溴官能化的聚丁二烯,将端二溴叠氮化,与含α,ω-二炔基的偶氮化合物进行“点击”反应得到多嵌段聚丁二烯。用FTIR、NMR、GPC、 UV-vis和AFM分析手段,对所合成聚合物的结构、分子量、光致异构性和形态进行了详细研究。含有偶氮苯和三氮唑基团的多嵌段聚丁二烯,可以与小分子4,4’-联苯二酚通过氢键相互作用形成超分子聚合物,考察了该聚合物的光致异构化效率与形态的变化。利用ADMET聚合制备了含偶氮苯基团的超支化聚烯烃。根据分子设计,首先合成了带偶氮苯基团的AB2型单体,并通过NMR、MS、元素分析、FTIR等测试手段,对单体的结构进行了表征和确认。该单体含有一个富电子的末端烷基烯烃(A)和两个缺电子的丙烯酸酯末端基(B),用Grubbs钌卡宾催化剂引发A和B烯烃之间的多次交叉易位反应,即ADMET聚合,就可以得到含有大量丙烯酸酯官能团的超支化偶氮聚合物。用1H NMR方法证实了聚合物的超支化结构,并用MALLS-GPC手段表征了聚合物的分子量及分子量分布。UV-vis谱图显示这种超支化结构的偶氮聚合物能够保持较长时间的顺式光学活性。发现并提出了一种简便实用的“串联式ROMP-ADMET聚合”新方法,合成了功能性的LCHBP。基于ROMP-CT易于使链末端和侧基功能化的特性,通过精心设计,在分子链上同时引入两个富电子的烯丙氧末端基团(A)和多个缺电子的丙烯酸酯侧基(B),获得反应性遥爪型的A2B2n类大分子单体。利用富电子基团和缺电子基团的反应性差异,促成二者之间的ADMET聚合,“一锅法”合成了LCHBP。用NMR、MALLS-GPC和MALDI-TOF MS等分析手段,对线性A2B2n类大分子单体和LCHBP的结构和分子量进行表征。同时考察了不同的催化剂组合对串联式ROMP-CT和ADMET聚合的引发倾向,比较一定反应条件下不同单体结构(含有偶氮苯侧基)的聚合行为,可控的合成了一系列带有丙烯酸酯和偶氮苯侧基的LCHBPs。在此基础上,利用LCHBP外围大量的丙烯酸酯官能团,在稀溶液中与多官能巯基化合物(二官能的1,4-丁二硫醇以及四官能的四(3-巯基丙酸)季戊四醇酯)进行thiol-Michael加成反应,分子内交联得到两种单分子的聚合物纳米颗粒(PNP1a和PNP1b),同时赋予纳米颗粒表面不同数量的巯基基团。使用FTIR、NMR和UV-vis方法,对交联聚合物的结构进行了测试。元素分析结果表明,PNP1b中S元素的含量接近PNP1a的两倍。GPC曲线显示,其流体力学体积相对于LCHBP有所减小,证实发生分子内交联反应,获得了单分子聚合物纳米颗粒。DLS、AFM和TEM检测表明,得到了分散性好、粒径均一的球形纳米颗粒。此外,还考察了高度支化聚合物的分子量及空间结构对形成单分子纳米颗粒尺寸的影响。将金纳米粒子以共价键的形式(Au-S)直接连接到上述聚合物纳米颗粒表面,形成不同金负载量的杂化纳米颗粒(HNP2a和HNP2b)。TGA分析显示,HNP2b表面金的含量约为HNP2a的两倍。利用NMR、FTIR、UV-vis、XRD和XPS检测手段,对杂化纳米颗粒的结构和光学性能进行表征。AFM和TEM测试表明,两种杂化纳米颗粒在不同浓度下,形成了多样化的形态(球形、纳米棒、链状)。DLS及冷冻TEM检测结构表明,溶液中的尺寸和形态与AFM、TEM的分析结果相一致。该杂化纳米颗粒还作为稳定高效的、可循环利用的纳米催化剂用于有机反应。