论文部分内容阅读
随着毫米波乃至太赫兹波技术的发展,对于太赫兹波半导体器件固态源的要求越来越高。而作为半导体电子器件微波固态源中的一种,相比于共振隧穿二极管(RTD)、耿氏二极管(Gunn)和等离子体波(Plasma wave)器件,雪崩渡越时间(IMPATT)器件以其更大的输出功率、更高的直流-交流转换效率,当仁不让的成为了功率输出方面最引人瞩目的研究对象。近年来,氮化镓(GaN)材料作为第三代半导体材料的杰出代表,正以其较大的禁带宽度,较高的临界电场、高电子迁移率和饱和速度、高热导率等特性,成为时下半导体电子器件备受瞩目的候选材料。基于器件和材料的共同考虑,在高性能太赫兹固态源中,GaN基IMPATT器件自然而然的成为了需要着力研究和发展的对象。由于目前为止尚有许多技术方面的难题需要解决,国际上对于GaN基IMPATT二极管的研究还停留在理论研究和仿真模拟的阶段。但可以预测的是,在工作频率、输出功率和转换效率方面,GaN基IMPATT二极管拥有着相比其他材料更加优越的工作特性。基于此背景,尽量发掘GaN基IMPATT二极管的优势和潜力并继续发扬;努力研究并发现其缺点及目前存在的问题;深入探讨造成这些问题的机理并提出解决方案,就构成了本文的研究初衷。文章第二章提出了GaN基IMPATT二极管的建模过程。基于蒙特卡罗方法和材料实验获得的数据,结合已有数值模型,确定了仿真所用到的GaN的速场关系及碰撞离化模型等,之后利用Silvaco-Atlas平台对GaN基IMPATT二极管进行结构设计、模型代入并得到二极管的静态击穿结果。并成功利用mixedmode平台对二极管进行了器件电路混合仿真。通过调整相关参数,得到了合理的交流大信号仿真输出特性。文章第三章研究了对GaN基IMPATT器件工作特性的研究结果。通过调整高低掺杂结构中对性能影响最大的五个参数:雪崩结P型区浓度、雪崩结N型区(高掺杂区)浓度、雪崩结N型区宽度、渡越区(低掺杂区)浓度和渡越区宽度,文章系统详细的分析了这些参数对GaN基IMPATT二极管的雪崩产生率、击穿电压、内电场分布、交流工作频率、输出功率和转换效率等工作性能的影响。结果显示在可工作的掺杂范围内,雪崩结P型区空穴浓度越高则器件工作效率越高;雪崩结N型区掺杂浓度和宽度主要影响器件的效率和功率表现,但对频率特性基本没有影响;漂移区掺杂浓度则主要影响器件的效率功率表现,而漂移区宽度主要影响频率表现。这部分工作对GaN基毫米波IMPATT二极管的设计做出了理论上的指导。本章工作也揭示一个问题:为了获得更好的性能表现,对于制造PN结GaN基IMPATT二极管来说,至少需要1×10199 cm-3离化浓度以上的P型GaN材料,而这对目前的P型GaN工艺水平来说要求较高。第四章研究了GaN材料较强的负微分迁移率特性对IMPATT器件工作性能的增强作用。因为这种负微分迁移率特性的存在,结合空间电荷效应对器件内部漂移区电场分布的压低作用,类似于一个正反馈系统,使得当IMPATT器件工作在大交流电压的情况下,电子在漂移区的漂移速度不降反升,最终超过了饱和漂移速度,继而使得GaN基IMPATT器件可以耐受更大的交流电压摆幅或者说更大的交流电压调制因子,从而获得更佳的交流功率及直流-交流转换效率。研究发现在文中设计的高-低掺杂的单漂移穿通模式的器件中,当工作频率为225 GHz时,没有负微分迁移率效应作用的影响下效率最大只能达到19.0%,功率达到1.58W,而有此效应影响的器件效率最大可以达到26.6%,功率可以达到2.29 W。本章节的研究从器件内部电子运动的细节上对这种效应的机理进行了解释。本章同时利用肖特基结代替PN结结构进行了GaN IMPATT的大信号仿真,结果显示获得了优良的性能。第五章研究了GaN材料的各向异性效应对IMAPTT器件的工作性能带来的影响。由于制造技术的原因,目前还没有已知的GaN IMPATT的实验数据,因此工作为GaN基器件制造的材料选取方面做出了指导性的预测。文中选取传统的沿c轴(Г-A晶向)和沿底面方向(Г-M晶向)生长的两种GaN材料,对它们制造的IMPATT二极管分别进行不同频率、不同电压、不同偏置电流等条件下的大信号仿真。通过比较,发现IMPATT的工作性能对GaN材料晶向非常敏感。沿Г-M晶向的器件在高频(本章中设计的器件在140 GHz以上)时的工作性能更佳,主要体现在有较高的输出功率,转换效率和更强的负阻产生能力;但是在低频(本章设计的器件中140 GHz以下)时沿Г-A晶向的器件工作性能更优。第六章研究了串联电阻效应对GaN基IMPATT器件的影响,并分析了其降低器件工作性能的机理。结果显示,在100 kA/cm2的偏置电流密度和40%的电压调制下,当Г-A晶向的IMPATT二极管的欧姆接触电阻率达到10-5Ω·cm2数量级,Г-M晶向的达到10-6Ω·cm2数量级的时候,器件的交流输出特性就会截止。文献显示目前国际上N型GaN的欧姆接触比接触电阻率工艺较成熟,可以远低于此值;然而P型GaN欧姆接触电阻基本在10-4和10-5Ω·cm2数量级徘徊。显然,过高的P型接触电阻是造成GaN基PN结IMPATT二极管难于制造和工作的原因之一。文章还探究了这种效应造成GaN基IMPATT器件的工作性能衰减的机理:它并不会减小交流电压或电流振幅,而是造成交流电压电流相位延迟减小,从而引起交流性能衰退。本章的结论提示我们,在制造PN结GaN基IMPATT器件的研究中,不能仅着眼于提高P型空穴浓度以改善电流强度,更要着眼于改善P型欧姆接触电阻。文章认为利用肖特基接触制造GaN基IMPATT二极管具有很好的应用潜力。