电场作用下液滴形成动力学及滴状向射流转变的实验研究

来源 :江苏大学 | 被引量 : 0次 | 上传用户:fine_yhy
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
为深入了解液滴的几何特征和动力学特性,本文采用实验的方法,以液滴形成过程的研究为基础,通过对液滴的形态、尺寸、运动轨迹的测量,对液滴的生长、拉伸和分离的动态过程进行深入探究,探讨了周期性滴状模式、混乱状态和射流等三种模式,以及电场对滴状向射流转变的影响。在研究过程中,液体通过注射泵以一定的流量从垂直毛细管的管口喷出。通过搭建可视化实验平台,对液滴的形成过程及动力学特性进行观测、记录与分析。具体工作如下:1.在无外加电场情况下,对滴状或射流的形态和动力学进行实验研究,使用高速数码摄像机记录三种雾化模式随时间的演变过程。随着流量(We)的增加,可以清楚地观察到去离子水(DI)和无水乙醇的周期性滴状模式(Periodic Dripping)、混乱状态(Dripping Faucet)和射流(Jetting)模式。在周期性滴状模式下,去离子水的无量纲长度随弯月面振荡逐渐增长,而无水乙醇的无量纲长度在持续增长过程中却表现出微弱振荡。在混乱状态下,由于液滴尺寸不再恒定,去离子水出现了更为不规则的振荡频率。讨论了主液滴的无量纲极限长度和宽度随流量和管径的变化情况。同时,对液滴的粒径做定性预测并与实验值进行对比。2.在外加电场情况下,研究了低流速下液滴的动力学和带电弯液面的振荡。在液滴分离瞬间,主液滴和液丝的临界尺寸用于表征液滴的形成和弯液面振荡的动力学特性。结果表明,主液滴直径随电压(Bo E)的增加而减小,并且与毛细管直径有关,液滴极限长度随之减小,而液丝直径和长度随电压(Bo E)增加而增加。当主液滴分离后,弯液面通常会振荡。振荡频率随电压(Bo E)的增加而增加,且受流量影响较大。同时,提出了一个预测带电弯月面振荡频率的公式。通过定性地分析振荡频率的变化,与实验值吻合良好,其振幅(或位移)受电压(Bo E)的影响很大,并且随电压(Bo E)的增加而增加。3.对电场作用下液体由滴状向射流的转变过程和滴状模式下液滴形成的颈缩过程的进行了研究。研究表明:滴状模式下,电压对液滴的颈缩影响几乎无影响。由于气液界面电切应力的增加对界面的稳定作用,电场作用使得射流转变提前,即第二临界速度VJ所对应的流量(或Wec)减小。通过建立带电液滴的颈缩模型和转变模型,给出电场作用下滴状向射流转变的标准。当液滴以混乱状态的形式出现时,随着Bo E增加,一定流速范围的液体可以实现从混乱状态向射流模式的转变。
其他文献
为减轻对石化柴油的过度依赖,以及解决传统柴油机氮氧化物(Nitrogen Oxides,NOx)和soot排放难以同时降低的问题,本文基于含氧燃料特性和新型燃烧模式协同控制的思想,深入研究了含氧燃料燃烧的化学反应机理及预混压燃(Premixed Charge Compression Ignition,PCCI)燃烧过程的特点和作用因素。本文基于课题组前期试验,采用预喷-预喷-主喷多段喷射策略耦合高
路径规划问题是一个非常经典的问题,在很多领域有广泛应用,通过深度强化学习技术来解决路径优化问题近年来吸引了大量学者关注,已成为路径规划问题的热点方向。具有强大感知能力以及决策能力的深度强化学习技术,既可以很好的感知环境场景,又可以高效的决策,在解决路径规划问题时有很强的鲁棒性以及通用性。当使用深度Q网络(Deep Q-Network,DQN)算法解决离散型的路径规划问题时,网络训练速度比较慢,训练
磁流变阀是以磁流变液作为工作介质的液压控制调节元件,与传统液压阀不同的是阀芯与阀体无相对运动,具有加工精度要求低、结构相对简单、易于控制等优点。但是,现有磁流变阀的安全可靠性较低并且能耗较大,限制了磁流变阀的应用范围,基于此,本文创新设计了一种复合驱动式磁流变阀,其工作磁场由励磁线圈产生的电磁场与环形永磁场共同施加,在无激励电流的情况下依然能保有一定的工作性能,并将其应用于减振器,进行了阻尼特性研
高温熔盐泵是太阳能光热发电系统中关键设备之一,其主要作用是驱动高温熔盐在系统中循环流动换热。由于立式多级长轴离心泵结构长,最大可到17m,且泵长期运行在300℃-565℃的熔盐环境中,熔盐温度高、密度和粘度大,转子系统易因热膨胀而“抱死”,这对高温熔盐泵机组安全稳定运行提出了技术挑战。为了提高太阳能光热发电系统高温多级熔盐泵的运行可靠性,本文在江苏省科技成果转化项目(BA2016167)的资助下完
当前我国新能源汽车需求量巨大,以电动车为例,各地充电桩或相关设备数目已达168万个,由于电动汽车整车噪声中减速箱噪声占比较大且齿轮噪声占了绝大部分,因此如何实现齿轮减振降噪目标,从而提升电动汽车NVH性能受到了广泛关注。本文以某电动汽车减速箱斜齿轮副为例,旨在利用齿轮修形技术改善其振动噪声特性并增加使用寿命。为此开展了一系列系统性的研究,详细阐述了齿轮最优修形方案的确定流程,并探究归纳了齿轮参数对
碳纤维增强树脂基复合材料(Carbon Fiber Reinforced Plastics,简称CFRP)是一种先进的复合材料,因其比强度、比模量高,广泛应用于航空航天、汽车制造以及体育用品等领域。但目前为止,CFRP加工仍以传统接触式机械加工为主,极易产生分层、裂纹、机械热损伤等各类加工缺陷,还会造成刀具磨损等问题。激光加工方法具有非接触、无刀具损耗等特点,为克服CFRP机械加工问题提供了独特优
医疗器械正在向数字化、智能化转型升级,“医疗+人工智能”成为了当今及未来医疗界的研究热点。在临床输液中,为提高患者的舒适度和安全性,需对输液装置进行智能化设计,以满足不同流量与管径下输液管内液体的加温、输液速度的精确控制以及输液管内气泡的有效检测等需求,而目前的输血输液加温系统,无法全部满足这些功能的需求,且传统的方法不能很好地实现输液加温监控系统的智能化。本文结合输液加温智能监控系统的国内外发展
单向器齿轮作为汽车自启停系统的重要零部件之一,其齿轮齿形质量直接影响到自启停系统的使用舒适性。目前,冷挤压成形方法因其高效、低耗、环保等优势广泛用于齿轮成形领域,但齿轮冷挤压成形存在齿形区金属填充不足、齿端成形塌脚过长、磷皂化润滑方式严重污染环境、摩擦模型对齿轮成形仿真结果影响较大等问题。为了解决上述问题,本课题基于数值模拟提出微织构控流冷挤压成形方法,开展齿轮成形模拟中摩擦模型研究和齿轮成形试验
在国家新能源汽车政策的引导和支持下,新能源汽车产业规模迅速壮大。纯电动汽车以电机代替传统发动机,车内声压级有了大幅降低,但消费者对于车内噪声的抱怨并未减少,这就对电动汽车NVH性能开发提出了更高的要求。对于电动汽车噪声的评价指标不能仅仅考虑声压级,还需要考虑能够反映乘客主观感受的声品质特性。本文旨在以声品质作为驱动电机噪声优化目标,通过建立声品质预测模型和电磁噪声多物理场仿真模型,研究电机结构参数
绿篱是果园的屏障,起到间隔、防护作用,充分利用自然资源,维护生态环境,美观又环保。但是,绿篱修剪工作十分繁重,目前普遍使用手持式绿篱机进行修剪,其噪声大、环境污染严重、工作效率低。因此,研制出高效的自动修剪机械手成为当下热点。本文以自动化绿篱修剪机械手为研究对象,从结构方案设计、运动学分析和轨迹跟踪控制方面展开研究,为智能绿篱修剪机械手的研发提供理论基础。论文的具体研究工作如下:(1)根据绿篱修剪