【摘 要】
:
当前,越来越多的领域如航空航天、发电工业等对耐热合金提出了更高的要求,而传统耐热合金的性能挖掘已经接近其理论极限,因此为了适应行业快速发展的需要,对新型耐热合金的开发已然迫在眉睫。高熵合金作为一种新型合金设计理念,近年来得到了广泛研究和快速发展。不同于传统合金的以基体元素为主、其它少量元素为辅的设计方法,此种合金以不少于多种金属元素为主元,按照(近)等原子比搭配。目前,高熵合金的种类迅速增多,展现
论文部分内容阅读
当前,越来越多的领域如航空航天、发电工业等对耐热合金提出了更高的要求,而传统耐热合金的性能挖掘已经接近其理论极限,因此为了适应行业快速发展的需要,对新型耐热合金的开发已然迫在眉睫。高熵合金作为一种新型合金设计理念,近年来得到了广泛研究和快速发展。不同于传统合金的以基体元素为主、其它少量元素为辅的设计方法,此种合金以不少于多种金属元素为主元,按照(近)等原子比搭配。目前,高熵合金的种类迅速增多,展现了独特性能,尤其难熔高熵合金有望取代传统的耐热合金,成为新一代耐热合金选材。目前已有的多数难熔高熵合金都存在密度高、比强度低、室温脆性严重、抗氧化性不足等问题,这在一定程度上限制了难熔高熵合金的进一步发展与应用。因此,本文聚焦于本课题组前期提出的低密度Al Nb2Ti V难熔高熵合金,在已有的研究基础上进一步探究了其微观组织、力学性能和高温变形行为。首先,通过电弧熔炼和滴铸技术制备了铸态Al Nb2Ti V合金,并研究了其微观结构、成分分布和不同温度的力学性能。结果表明,合金的微观组织由典型的树枝晶组成,相结构由B2相组成,合金密度约为6.19 g/cm~3,低于大部分已报道的难熔高熵合金。室温压缩性能测试表明,室温屈服强度约为1043 MPa,比屈服强度达到167MPa·cm~3/g,压缩应变率达到100%,具有优异的室温变形能力。随着温度的升高,合金的屈服强度降低,在600℃和800℃时屈服强度分别为694 MPa和612 MPa。进一步研究了Al Nb2Ti V合金的高温变形行为和微观组织演化规律。在1000℃、1100℃、1200℃下分别以10-1 s-1、10-2 s-1、10-3 s-1的应变速率进行了高温热模拟实验。该合金在高温变形过程中发生了以加工硬化为主导的硬化现象和以动态回复和动态再结晶为主导的软化现象。对流变应力的拟合结果表明,合金的表观激活能随着应变的增加而表现出略微降低的趋势,但基本稳定在401~375 k J mol-1范围内,变化范围较小,尤其是应变达到0.5以后,表观激活能的值几乎保持恒定,表明高温变形过程较为稳定。此外,不同条件下的EBSD分析结果表明,合金中同时发生了两种动态再结晶机制,即非连续动态再结晶和连续动态再结晶。本研究为进一步利用高熵合金固溶体形成准则进行合理的成分设计,获得低密度、高强度、本征韧性的新型耐热合金提供了思路参考。高温变形行为和微观组织演化的研究结果为该合金进行高温塑性变形工艺设计提供了理论支撑。
其他文献
谢永增1961年生,河北深州人。北京画院一级美术师,中国美术家协会会员。2019年,山西省吕梁市临县人民政府在中国历史文化名村孙家沟建立了囯内首个窑洞式乡村艺术馆“谢永增孙家沟艺术馆”。基于特定的社会进程、文化结构和生命体验,很多出生于20世纪60年代的画家对“乡土”怀有浓厚的情结性眷恋。
高能束抛光因效率高、非去除、易于自动化等优点,在模具生产制造过程中有着广泛的应用前景。微束等离子作为一种能量密度高、稳定性好且易控制的高能束热源,已广泛应用于超薄零部件的焊接,但目前对微束等离子抛光模具表面的研究仍处于起步阶段。微束等离子抛光是一个极其复杂的物理过程,涉及传热、电磁感应、气体液体流动以及金属表面微熔凝等多种物理现象,目前还未有完备的理论框架对其整体过程做出合理的解释。本文通过实验的
新量子基态是近年来凝聚态领域的研究热点。人们已经认识到,在弱相互作用的电子系统中自旋-轨道耦合可以引起非平庸的能带拓扑结构,如拓扑绝缘体和拓扑半金属;然而,在强相互作用的电子系统中该自旋-轨道耦合作用还没有被完全理解。因此,同时具有强自旋轨道耦合和强电子关联的材料体系为理解这种效应提供可能,这些体系主要包括4d或5d过渡金属元素,如铱氧化物或铱酸盐。本论文中,我们主要利用扫描隧道显微镜/谱对两种铱
共价体系通常很难拥有较大的塑性形变,这主要是因为硬脆共价键具有方向性,而不像可延展的金属键那样电子是非局域的。本文通过第一性原理计算探究了二维III-Ⅵ族单层材料,如In Se、Ga Te等。本文预测了III-Ⅵ族单层材料的几种同素异形体,分别将其命名为H、T、n M相,这些同素异形体的能量非常接近且热力学稳定。在室温下,能量差异几乎可以忽略,甚至在进行一定量的掺杂之后,可以完全消除这种差异。我们
三维测量技术因能为材料的成形性能评估,成形工艺改进,成形精度评价等提供有效的基础数据支持,现已是材料加工领域重要发展方向。其中数字散斑投影三维测量是较为先进的三维测量手段之一,隶属于单帧面结构三维测量方法。其在测量过程中仅需投影单幅编码图像,易于编码解码,测量过程灵活方便,因而在动态测量与手持式测量领域极具优势。但受限于匹配算法的准确性,往往无法兼顾高精高效测量。基于此,本文研究一种基于数字散斑投
水位预报是水文预报的一个重要组成部分,是水量调度的重要环节之一。由于水位受气候、人类活动、下垫面等多种不确定因素的影响,水位序列常常具有较大的不确定性。因此,及时准确的水位预报对水库调度、水资源配置等工作具有非常重要的作用。因此本文考虑水位序列的变化特性,选用骆马湖流域皂河闸水文站、洋河滩闸水文站、嶂山闸水文站、苗圩水文站、窑湾水文站、袁场水文站、张宅水文站、新店水文站、晓店水文站9个测站的月水位
高端化装备对所需精密零部件提出越来越严格的几何精度要求,不同制造手段与不同使用目的的特殊结构零部件需要对应的特殊精密测量装备,促使精密测量装备不断向着高端化、专门化发展。对于深孔类特殊零件的圆柱度,目前多采用各种人工测量与评价手段或利用其它几何误差进行简单替代,一致性差、精度无法保证。深孔件空间小、跨度长,亟需具有高测量精度与效率的测量方法。本文面向大长径比深孔零部件展开圆柱度精密测量技术的研究,
永磁同步电机因具有高效率、高功率密度、高响应、易控制等优点被广泛应用于混合动力汽车、轨道交通、电梯、医疗器械、石油工业等诸多领域。永磁同步电机控制效率的提升能有效降低能耗,对节能减排和全球温室效应问题的解决具有非要重要的意义。因此,本文以表贴式永磁同步电机为研究对象,就如何提高其运行效率展开以下研究。本文首先通过分析永磁同步电机的损耗来源,采用将铁损等效为电阻上的发热的方法,建立了计及铁损的永磁同
整体舱段是航空航天装备中较为关键的零件,舱壁径向封闭,内壁上型腔特征复杂,待加工面数量众多,目前编程方式和加工方式的自动化程度和效率较低。针对上述问题,本文开展了整体舱段零件特征自动识别和舱段零件机器人加工轨迹规划研究,并开发了相应的软件功能模块。针对整体舱段零件目前编程方式需要人机交互手动选取加工面的不足,本文研究了舱段零件型腔相交特征的分解和加工区域的识别。基于图特征方法,实现了一种复杂型腔特
智能制造背景下,机械系统的结构越来越复杂多样,对其关键零部件进行准确及时的故障诊断变得愈发重要。但是,在实际的工业生产环境下,采集到的真实数据通常存在数据量大、噪声多和故障样本少等特点,这无疑加大了故障诊断的难度。然而传统深度学习模型在面临复杂数据时,受限于特征提取能力不足且无法处理不平衡小样本,从而难以获得较为理想的诊断结果。因此,本文针对这些问题改进设计了两个自编码器模型,加强了特征传输共享能