基于颗粒单向流动效应的月壤贯入式取心技术研究

来源 :哈尔滨工业大学 | 被引量 : 1次 | 上传用户:wangzhaohai
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
月壤的采集与分析是月面资源探测任务中的重要环节,同时也为今后人类建立月球基地、开发月球资源提供可靠的技术支持。与松散无序的月壤样品相比,具有层理信息的剖面样品更能充分反映月表的地质构造、演化历史以及矿物资源的分布,是采样任务中优先选取的目标。目前采集月壤剖面样品的方法已有两种:钻进式取心和贯入式取心,其中以钻进式取心为主。对于深层且密实度较高的月壤,由于回转钻进过程中一般会增加冲击模式,从而导致样品层理信息遭受较大程度的破坏。贯入式取心在采样深度上不及钻进式取心,但使用的工具简易轻便,获取的样品能保持良好的剖面层理信息。然而,由于样品在取心管内易于发生堵塞,导致贯入阻力增大,取心率降低,且拔出取心管时需要很大的提拉力。本文针对贯入式取心存在的以上问题,提出了基于颗粒单向流动效应的减阻增效方法。以月壤颗粒单向流动特性为主线,采用基于离散单元法的可视化仿真技术,阐释了月壤颗粒在纵向振动的非对称功能界面上的单向流动特性,分析了振动参数、界面参数、颗粒粒径和形态对单向流动性能的影响规律。在此基础上研制了取样器原理样机及试验系统,并开展了取心效能试验研究。
  通过建立取心管与月壤相互作用的物理模型,对贯入式取心原理及其高阻力、低取心率特性的致因进行了分析。通过建立取心负载模型,为取心管结构参数优化和极限采样能力预测提供了理论基础。在此基础上,提出了一种基于颗粒单向流动效应的减阻增效方法并建立了颗粒单向流动等效力学模型,对方案的可行性加以论证。此外,建立了取心效能评价指标体系以量化方案的减阻增效性能。
  对物体施加水平作用力使其沿斜坡向上滑动,坡度不同则所需的作用力也不同,参考该原理设计了一种在纵向简谐振动条件下可以实现颗粒单向流动效应的非对称功能界面,并通过试验对其功能进行了验证。建立了非对称功能界面与月壤颗粒相互作用的离散元仿真模型,开展了颗粒单向流动行为仿真研究。通过分析非对称功能界面与颗粒作用的动态过程,揭示了颗粒的单向流动特性,并分析了颗粒之间的相互作用对单向流动性能的影响。
  通过离散元仿真技术研究了界面参数、振动参数、颗粒粒径及形态对单向流动性能的影响规律。基于Box-Behnken响应面试验设计方法建立了振动参数、显著性界面参数分别与单向流动速率和流动域范围之间的回归方程,为取心管界面参数的优化设计提供指导。
  基于取心负载模型和颗粒单向流动特性回归方程,开展了取心管结构和界面参数优化设计,研制了取样器原理样机及取心效能测试系统。采用三维振动压实工艺制备了模拟月壤剖面样本,以此为对象开展了取心试验研究。通过与传统冲击贯入式取心对比,验证了取样器的实际减阻增效性能,并分析了规程参数(取心管振幅、频率、轴向压力)对取心效能的影响。
  本文提出了一种基于颗粒单向流动效应的月壤贯入式取心减阻增效方法,通过对颗粒单向流动特性研究,分析出了振动参数、显著性界面参数分别与颗粒单向流动速率和流动域范围之间的量化关系,并在此基础上研制了取样器原理样机。通过试验证明了该方案与传统冲击贯入式取心相比具有更高的取心效能。研究成果将为我国未来载人登月任务月壤剖面样品的高效采集提供新原理和新方法。
其他文献
摘要:高校是创业培育的主力军,创业教育追求知行合一,是实践性很强的教育活动。在此基础上自编问卷针对在杭高校进行抽样调查,运用调查数据对大学生创业能力做出基本评价和相关性统计分析,并有针对性的提出建议。  关键词:创业能力;分层调查;培育路径  中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2019)14-0041-02  在大众创业,万众创新的背景下,全国各地大力推进创新
期刊
核酸适配体是一种寡核苷酸序列,能与类似抗原抗体结合的方式识别目标分子,并具有多种优势,可广泛应用于检测、医药及成像等领域。但通过SELEX筛选的适配体可能无法直接应用,需要进行截短优化以提高其靶向特异性和应用稳定性。目前,适配体截短主要是通过基于分子对接模拟预测的经验式去除核苷酸的方法来实现的,这通常需要繁琐的试错过程,有时甚至会导致潜在的错误预测结果。PD-L1是重要的肿瘤标志物,同时也是用药伴随诊断指标及治疗靶点。目前,肿瘤细胞表面表达的PD-L1主要通过ELISA检测,然而,从病人身上提取肿瘤组织的
超顺磁性Fe3O4亚微米粒子因其具有的大的比表面积,良好的生物相容性和易于表面修饰等性能,被广泛的应用于生物工程,环境保护及诸多领域之中。如在生物工程领域中,超顺磁性亚微米粒子被用来酶的固定化、提取蛋白质与核酸;环境领域则应用于污染物的吸附与农药残留检测等。
  本文使用改良的溶剂热法,对磁性亚微米粒子进行了放大制备。并利用磁性复合粒子进行了质粒DNA的提取、土壤DNA的提取及水中铅离子的吸附,主要工作为:
  (1)利用溶剂热法放大制备了磁性Fe3O4亚微米粒子,并对其进行SEM、TEM、F
糠醛作为一种重要的可再生生物燃料前体,主要由木质纤维素通过戊糖脱水制得。然而水解液中的低糠醛浓度(3-6wt%)通常会导致下游分离过程能耗高。在不同类型的糠醛分离过程中,渗透汽化(PV)由于其环境友好、节能等优点显示出巨大的优越性。目前用于分离糠醛的PDMS渗透汽化膜性能有待于进一步提高。开发与糠醛亲和性更强的渗透汽化膜对降低糠醛分离过程能耗具有重要意义。
  PDMS-PTFPMS嵌段共聚物与聚[(3,3,3-三氟丙基)甲基硅氧烷](PTFPMS)聚合物作为一种有机氟硅膜材料,具有优异的疏水性和耐
超分子凝胶是由低分子量化合物通过非共价力相互作用而形成的纳米结构材料。核酸结构单元是超分子凝胶化的理想候选物,因为它们易于参与可逆的非共价相互作用。其中,鸟嘌呤具备较多的氢键供体和受体基团,并且具备良好的生物相容性,所以基于鸟苷的超分子水凝胶被广泛用于功能材料领域。相对于在生物医学或材料科学等领域应用的报道,鸟苷超分子水凝胶在有机催化方面的运用却很少被探索。
  L脯氨酸是一种天然氨基酸,其作为分子间Aldol反应的有效催化剂被人们广泛研究。近年来,人们不断尝试使用L脯氨酸衍生物在水中实现不对称Al
航天器在轨服务是当前国内外航天领域的热点与前沿方向,高精度的自主相对导航是实现在轨服务接近操作控制的前提条件。单目视觉以其体积小、功耗低及信息丰富等优势已成为在轨服务航天器相对导航敏感器的首选,针对诸如失效航天器等无法提供合作标识器的航天器视觉相对导航的相关研究迫在眉睫。本学位论文在某部委“×××在轨服务航天器视觉测量技术”项目的资助下,以航天器在轨服务为研究背景,考虑基于目标航天器自然特征的单目视觉相对导航所带来的特征冗余、存在粗大误差及测量频率低且不连续等问题,重点围绕特征主动选择、相对位姿鲁棒性确定
电磁波吸收与屏蔽材料主要用于吸收或衰减电磁波,是防治当前日益严重的电磁辐射污染问题的重要手段。目前,新型电磁波吸收与屏蔽材料要求满足“强”、“宽”、“轻”、“薄”和耐高温、耐腐蚀等特点。因此,碳材料,包括炭黑、碳纤维、石墨烯、碳纳米管、生物质等,因其轻质、耐高温、耐腐蚀和独特的电学性能等特性,使其在电磁波吸收与屏蔽领域受到了广泛的关注。石墨烯纳米带作为的一种条带状小尺寸的石墨烯衍生物,具有高的比表面积、优异的机械和电学性能、较高的化学反应性和丰富的边缘结构,同时还具有较强的性能结构的可修饰性与可调控性,使
空间碎片环境是在轨航天器及人类空间活动所面临的主要威胁之一。空间碎片环境工程模型是采用概率统计方式描述空间碎片时空分布规律的数学预报模型,工程模型建模技术研究是航天安全体系中的一项重要基础工作。目前相关研究领域已开发多款工程模型,服务于国际空间站等重要航天活动。
  工程模型建模过程误差来源及影响分析可为模型准确性判断提供理论基础,也可为模型的更新升级提供技术路线参考。微小尺寸空间碎片环境探测较为困难,模型间交叉对比是工程模型准确性判断的主要途径之一。工程模型误差来源及其影响分析是交叉对比过程准确性
广布疲劳损伤评估在运输类飞机结构设计和老龄飞机适航审定中受到高度重视。对飞机疲劳敏感结构进行损伤容限分析,以制定合理的维修任务,保障飞机持续适航性。因此,对多点损伤结构的疲劳断裂性能进行评估为飞机结构完整性分析提供参考。
  首先,本文利用试验法分析非共线多裂纹有限尺寸空孔板疲劳特性。通过改变孔间距和孔径来分析其对多裂纹疲劳裂纹扩展寿命和剩余强度的影响,并分析相邻裂纹布局对裂纹扩展路径的影响。结果表明Ι型裂纹不再是自相似扩展,且裂纹扩展寿命和剩余强度与孔间距成正比关系,与孔径成反比关系。
  
随着航天事业对太空不断的探索,航天器控制系统对于在轨自主控制技术及可靠性的需求日益增长。然而航天器一旦在太空中出现故障,若要修复则会花费大量的物力财力,并且无法在短时间内完成。因此,为航天器设计自主的姿态容错控制方法,在航天器部分执行机构或敏感器故障的情况下能够满足一定的控制需求是需要深入研究的方向之一。针对上述需求,本论文研究的主要目的是:针对搭载冗余飞轮作为执行机构的航天器设计姿态容错控制方法。为此需要在航天器模型存在不确定性、外部干扰和执行机构故障的情况下,解决现阶段容错控制器保守性强、执行机构输入