【摘 要】
:
氧离子固体电解质因其优良的电学性能已被广泛的应用在固体氧化物燃料电池、氧传感器等能量储存与转换器件中。相比于传统的氧化钇稳定氧化锆(YSZ)电解质,氧化铈基陶瓷材料具有更高的电导率,成为目前最具潜力的氧离子电解质,并有望拓展器件在中低温区(300~600℃)的应用。本文以氧化铈基纳米材料为基础,制备一维纳米纤维和二维薄膜电解质,从增加氧空位浓度与优化空位迁移过程两方面出发,提高氧化铈基电解质的电学
【基金项目】
:
Toyota Motor Corporation; 国家自然科学基金(51323001);
论文部分内容阅读
氧离子固体电解质因其优良的电学性能已被广泛的应用在固体氧化物燃料电池、氧传感器等能量储存与转换器件中。相比于传统的氧化钇稳定氧化锆(YSZ)电解质,氧化铈基陶瓷材料具有更高的电导率,成为目前最具潜力的氧离子电解质,并有望拓展器件在中低温区(300~600℃)的应用。本文以氧化铈基纳米材料为基础,制备一维纳米纤维和二维薄膜电解质,从增加氧空位浓度与优化空位迁移过程两方面出发,提高氧化铈基电解质的电学性能。此外,基于氧化铈基纳米纤维制备出中低温下使用的微型氧传感器。主要内容如下:采用静电纺丝与磁控溅射相结合的方法,制备YSZ纳米纤维复合Ce0.8Sm0.1Nd0.1O1.9(SNDC)薄膜电解质,并以YSZ纳米纤维作为应力诱导剂,调控SNDC薄膜的电导率。结果显示,纳米纤维使复合薄膜电解质表面形成连续凸起的结构,这种特殊结构诱导薄膜水平方向产生拉应力,有利于离子的迁移。600℃时复合电解质的电导率可达0.026 S?cm-1,是SNDC薄膜的两倍以上。采用静电纺丝法制备Ce0.8Gd0.2O1.9(CGO)纳米纤维,通过控制煅烧温度得到不同晶粒尺寸的CGO纳米纤维。研究发现,晶粒尺寸越小,纳米纤维表面氧空位越多,电导率越大。采用静电纺丝法制备CGO/Al2O3(AO)复合纳米纤维电解质。研究发现,AO以非晶的形式存在于复合纳米纤维中。随着AO复合量的增加,CGO晶粒尺寸从10.8 nm减小到4.2 nm,氧空位浓度增多,电导率先升高后降低,这是氧空位与非晶AO综合作用的结果。此外,AO的加入可以减缓CGO晶粒高温下的长大,相比于CGO纳米纤维,CGO/AO复合纳米纤维退火后的晶粒尺寸更小,氧空位更多,高温稳定性更好。利用静电纺丝与旋涂相结合的方法合成CGO纳米纤维复合YSZ薄膜电解质,并基于这种复合电解质,设计、组装了一种微型氧传感器。研究发现,与YSZ、CGO块体氧传感器相比,CGO/YSZ纳米复合氧传感器电导率更高,工作温度可降低350℃。
其他文献
量子反常霍尔效应以及相关拓扑量子现象不但是凝聚态物理的重要研究课题,还有可能用于开发新颖的拓扑量子器件。内禀磁性拓扑绝缘体集内禀拓扑电子态和内禀磁有序于一体,二者间较强的相互作用使此类材料有望在较高的温度实现量子反常霍尔效应。MnBi2Te4是第一种实验上发现的内禀磁性拓扑绝缘体,近期引起了人们极大的研究兴趣。高质量的MnBi2Te4薄膜是该研究方向的材料基础,具有很大的挑战性。本论文结合分子束外
脂滴(LD)是细胞中重要的细胞器,其丰度和尺寸体现了细胞内能量的涨落。脂滴的异常往往伴随肥胖、脂肪肝等疾病的发生。目前已知CIDE家族蛋白介导了脂滴的融合,通过形成脂滴融合复合物(LDFC),将供体脂滴中的中性脂灌注到受体脂滴中,从而形成一个完整的大脂滴。这一过程对于脂肪和肝脏中的脂积累起到了重要作用。然而,人们对LDFC的微观形态,动态性质和调控机制仍然缺乏了解。通过对LDFC的深入研究可以进一
提高宽工况范围下燃烧反应动力学模型的预测能力是燃烧科学发展的关键问题。不确定性分析是控制燃烧反应动力学模型误差的重要方法,主要通过数值方法探究燃烧反应动力学模型的不确定性来源以及传递机制,采用模型优化等方法减少模型参数不确定性。然而,目前的不确定性分析方法还存在计算效率较低、实验工况和实际条件不匹配等诸多问题,难以应用于复杂的燃烧反应动力学模型。本研究旨在将不确定性分析方法应用于复杂燃烧反应动力学
本论文研究了在旋量凝聚体中调控自旋交换相互作用和利用自旋交换实现自旋量子态动力学制备的相关问题。首先,针对旋量凝聚体中自旋交换相互作用较弱,且容易被磁场抑制等问题,我们提出了通过周期驱动实现共振自旋交换的方案,即通过驱动场直接补偿单粒子间自旋交换存在的能量失谐。该方案在87Rb-23Na旋量混合物中进行了数值验证。我们还提出了利用腔光场与原子的耦合来诱导等效自旋交换相互作用的方案。通过设定腔光场初
MicroRNA(miRNA)是一类存在于真核生物中的短链非编码RNA,它可以在转录后水平调控基因沉默。在植物中,miRNA的产生起始于由RNA Polymerase II(Pol II)转录MIR基因合成一条长转录本pri-miRNA。经过连续两次切割,pri-miRNA会被Dicer-Like 1(DCL1)加工成21 nt的短RNA双链,其中miRNA链会装载入ARGONAUTE 1(AGO
本论文针对钢-超高性能混凝土(Ultra-high Performance Concrete,简称UHPC)组合箱梁桥面系展开研究,从材料、构件和结构等不同层次,采用理论分析、试验研究和数值模拟等手段,分析其整体和局部静力性能,提出设计方法及优化建议。取得的主要研究成果如下:(1)采用优化的狗骨式轴拉试验方法,准确地量测了UHPC轴拉过程中的力与变形,基于试验提出了适用于不同钢纤维掺量的UHPC单
本文研究了里德堡原子系综中关于原子和光子的量子多体问题,着重探讨了其中的动力学过程和新颖的物理现象,以及其在量子信息处理中的潜在应用。首先,我们研究了有序的原子阵列系统中由里德堡缀饰诱导的相互作用及其引发的多体动力学。在第一个方案中,我们发现激光缀饰形成的非对称微扰路径会诱导出一种基态和里德堡态之间的等效自旋交换。这种人造的自旋交换相互作用具有长程特性以及高度的可调性,因此可以利用它来对一些常规体
置换型组合优化问题在生产制造、物流运输以及经济管理等诸多领域都有着重要的应用,一直以来得到了人们的广泛关注。求解优化问题的各种算法中基于仿真的方法是近年来的研究热点。此外,将具体问题的特征结合到算法的设计中是提升算法性能和问题求解效率的重要突破点。本论文研究置换型组合优化问题的一种基于仿真优化的求解方法——交互熵算法,重点关注两个具有代表性的问题——线性排序问题和单行设施布局问题,对结合问题特性的
小分子化合物的糖基化修饰是植物体内普遍存在的生理现象。糖基化作用能够修饰相应的苷元以改变其催化活性、溶解性、稳定性及其在细胞中的定位。植物体内糖基化修饰在调节激素的稳态平衡,外源有害物质解毒,抵御生物和非生物胁迫以及次生代谢产物的生物合成途径中都发挥着重要的作用,因此小分子化合物的糖基化修饰影响着植物生长发育的各个方面。在本研究中我们证实了一种小分子化合物的糖基化修饰对拟南芥花发育有极其特殊的影响
与引力波(GW)或伽马暴(GRB)事例关联的中微子,是指在宇宙中由致密双星体合并或者大质量恒星塌缩过程而伴随产生的,并具有短时间爆发特征的中微子。目前为止,理论对于这类天体事件内部发生的物理过程并不清楚。宇宙中穿梭的中微子,与物质极其微弱的相互作用使其能够作为信使,携带天体点源内部最原始的信息到达地球上的探测器。在已经到来的多信使观测时代,中微子、引力波和伽马暴的联合观测对于了解这些天体过程的动力