论文部分内容阅读
超高分子量聚乙烯(UHMWPE)纤维具有高物理机械性能、耐化学腐蚀、耐磨损、低密度等众多优点,已经被广泛应用于各个领域。然而由于UHMWPE纤维的结晶度高、表面光滑、表面缺少极性基团等原因,导致其表面加工性能很差,集中体现在其与树脂、橡胶等基体的界面粘接性很差。虽然,国内外研究人员已经采用多种物理和化学的方法对纤维进行改性处理,但目前很少有新的改性方法出现,而现有方法又存在各自的缺陷。因此,需要对UHMWPE纤维的改性研究做进一步的完善和发展,这对进一步拓展UHMWPE纤维的应用范围具有十分重要的意义。本研究基于构建的纤维改性模型,制备了三种不同的功能聚乙烯蜡(PEW),并分别使用其对纤维进行涂层改性处理,成功制备了具有良好界面性能的UHMWPE纤维。系统研究了影响功能PEW制备的影响因素,以及处理液浓度、单体接枝率、双单体的加入、处理液温度、功能PEW/硅烷复合改性处理对纤维与树脂基体的粘接强度的影响,并使用ABAQUS软件对纤维的拔出过程进行了有限元分析。探讨了改性处理前后纤维的表面化学组成、机械性能、浸润性、表面形态、纤维拔出过程的变化原因及机理。通过本课题的研究,在一定程度上提高了纤维与树脂基体的界面粘接强度,为UHMWPE纤维的表面改性提供了一种低成本、基团数量及种类可控制、有效的处理方法,从中得出的主要结论如下:(1)使用未改性的PEW作为原料对纤维进行涂层改性处理。结果表明:经涂层改性处理后,纤维与树脂基体的界面粘接强度得到提高,从而证明了纤维改性模型的可行性。(2)设计制备了马来酸酐接枝聚乙烯蜡(PEW-g-MAH)、甲基丙烯酸甲酯接枝聚乙烯蜡(PEW-g-PMMA)与马来酸酐/苯乙烯接枝聚乙烯蜡(PEW-g-MAH/St)三种不同的功能PEW。研究发现:通过改变制备条件,可以获得具有不同接枝率的功能PEW。并且St单体的协同作用可显著提高MAH的接枝率。红外光谱分析表明,MAH、MMA、St单体已被成功接枝到PEW大分子上。(3)处理液的浓度、涂层温度、接枝率、双单体协同效应、接枝单体的种类等因素可显著影响纤维与树脂基体的界面性能。研究发现:经浓度为9wt%的功能PEW涂层改性处理后,纤维的拔出强度得到显著提高。与原纤维相比,PEW-g-MAH改性处理纤维的拔出强度提高了39.80%,PEW-g-PMMA改性处理纤维的拔出强度提高了45.11%,PEW-g-MAH/St改性处理纤维的拔出强度提高了57.95%;纤维的拔出强度分别随着接枝率的增大和涂层温度的升高而逐渐增大。同时,纤维的拔出强度随着第二单体St用量的增加而逐渐增大。并且所用单体的种类会影响纤维的界面性能。涂层改性前后,纤维的物理机械性能、结晶度都没有发生明显的变化,但浸润性得到显著改善。红外光谱分析表明,改性纤维的表面引入了分别来源于MAH、MMA与St的功能极性基团。(4)功能PEW/硅烷复合改性处理可显著影响纤维的拔出强度、表面涂层耐磨性和浸润性。研究表明:随着硅烷交联剂浓度的增大,纤维的拔出强度随之逐渐增大,当浓度为12wt%时,与未处理纤维相比,PEW-g-MAH/硅烷复合改性处理纤维的拔出强度提高了71.38%,PEW-g-PMMA/硅烷复合改性处理纤维的拔出强度提高了77.97%,PEW-g-(MAH/St)/硅烷复合改性处理纤维的拔出强度提高了98.59%;同时,失重率与接触角分别随着硅烷交联剂浓度的增大而逐渐减小。红外分析表明,体系中引入的硅烷交联剂相互反应产生了三维网状交联结构,并且纤维的表面引入了新的功能基团如Si-O-C、Si-OH、Si-O-Si等。(5)功能PEW涂层改性处理可显著影响纤维的拔出过程。与未处理纤维相比,涂层改性纤维的拔出过程可分为A、B、C、D四个阶段,其拔出A段有更高的负荷数值,拔出B段更加明显,拔出C和D段会出现负荷的波动现象。而未处理纤维的拔出C、D段的区分不明显,且未出现负荷波动的现象。(6)使用ABAQUS软件中的粘聚力模型来模拟纤维的拔出过程。结果表明,所构建的有限元分析模型能有效表达功能PEW涂层改性UHMWPE纤维与树脂基体的界面粘接性能。功能涂层的存在对纤维拔出的实际过程和模拟过程都有显著的影响。所建模型对纤维拔出过程的A、B、C段都能较好的描述,但对D段的描述性较差。在纤维的拔出过程中,纤维所承受的应力是由界面层开始向周围的基体传递。功能PEW涂层以及其与硅烷交联剂的复合改性处理能显著提高界面层的内摩阻力。同时,功能PEW涂层作为纤维与树脂基体的中间桥梁,可以起到应力缓冲的作用,从而可阻止界面裂缝的扩展和应力集中的发生。功能PEW涂层处理纤维的损伤的过程呈明显的时间滞后性,且抵抗损伤的能力增强。功能PEW涂层中所含单体的极性、数量及种类可显著影响涂层的损伤过程。而硅烷交联剂的引入能进一步提升界面层抵抗损伤的能力。此外,功能PEW涂层的存在能显著提高界面层的耐冲击性,而硅烷交联剂的引入可进一步提高界面层的耐冲击性。