论文部分内容阅读
华北地区人工林生态系统在改善我国北方生态环境和提供生态服务方面具有重要的意义。据气候模型预测,未来气候变化所引发的华北人工林区干旱的频率和强度将会持续的增加,必将对区域人工林生态系统的结构和功能产生显著的影响。真实的探测该区域人工林生态系统能量分配、蒸散发和水分利用效率动态及其与干旱的关系,对于发展区域人工林适应性管理策略至关重要。本研究以北京地区典型油松人工幼林为研究对象,采用涡度相关法,对涡度相关系统的气体过滤系统进行了技术改进,分析了 2012-2017年人工幼林生态系统能量分配、蒸散发和水分利用效率的季节和年际变化动态,探讨了人工幼林生态系统能量分配、蒸散发和水分利用效率在不同时间尺度上的调控机制,对比分析了季节性干旱对人工幼林生态系统能量分配、蒸散发和水分利用效率的影响。通过以上研究,得到以下几方面的科学认知和结论:(1)净辐射(Rn)、感热通量(H)、潜热通量(LE)和土壤热通量(G)在六年的研究期具有相似的季节变化动态。感热通量是消耗净辐射的主要能量组成成分,而潜热通量只是在生长中期超越感热通量。夏季和秋季干旱都会导致生长中期和后期的感热通量显著大于潜热通量。土壤热通量在日和季节时间尺度上对人工幼林生态系统能量平衡具有重要的作用,但在年际尺度上土壤热通量的贡献可以忽略不计。(2)2012-2017年,人工幼林生态系统能量分配的主要特征为:高波文比(β=H/LE;6.28、6.42、5.65、5.34、6.40 和 8.49),高 H/Rn(0.37、0.36、0.36、0.30、0.34 和 0.39)和低 LE/Rn(0.15、0.17、0.17、0.16、0.15 和 0.16),β、H/Rn和 LE/Rn的年均值分别为 6.43、0.35 和 0.16。(3)人工幼林生态系统蒸散发(ET)具有明显的日、季节和年际变化动态。2012-2017年,日最大蒸散发分别为4.8、4.5、4.1、3.3、4.1和5.1 mm day-1,年累计蒸散发分别为328、371、290、326、334和365 mm,年均蒸散发为336±29 mm。蒸散发的季节变化主要受冠层导度和植被覆盖度等生物因子的控制,而这些生物因子又受可利用土壤水和饱和水汽压差的调控。蒸散发也具有显著年际变异,蒸散发与降雨量的比值(ET/P)介于0.66-1.62之间,蒸散发的年际变异主要是由前一年非生长季和当年生长季降雨共同补给土壤水导致的。这些结果清晰的表明,降雨的发生时间和前一年土壤水的遗留效应对调控人工幼林生态系统蒸散发年际变异至关重要。(4)2012-2017年,该人工幼林生态系统水分利用效率(WUE)的年均值范围为1.39-1.93 g C kg-1 H2O。干旱发生时间和持续长短显著影响人工幼林生态系统WUE的季节和年际变异。夏季干旱会降低生态系统WUE,秋季干旱会增加生态系统WUE,而春季干旱对生态系统WUE影响不明显。相比于短期干旱(干旱期<30天),长期干旱(干旱期>30天)对人工幼林生态系统生产力和蒸散发的影响更大,从而调控生态系统WUE的变化。干旱对人工幼林生态系统生产力、蒸散发和水分利用效率还具有滞后的影响,滞后时间一般为3年。(5)2012-2017年,生长季月WUE和归一化植被指数(NDVI)、土壤体积含水量(VWC)具有显著的线性正相关关系,与降雨(P)呈现二项式关系,人工幼林生态系统WUE的季节变异主要是由这些生物物理变量调控生态系统生产力来决定的。与此相反,人工幼林生态系统WUE的年际变异主要是由可利用土壤水调控植被覆盖来决定的。综上所述,由于华北地区大规模植树造林项目的继续实施和现有林分的持续增长,预计未来由于干旱而导致的区域水缺失问题将会持续凸显,势必对区域人工林的发展和区域水资源管理造成一定的影响。我们研究发现,春季是研究区人工林生长的关键阶段,春季土壤水的高低会显著影响后续人工林结构和功能的发展。此外,我们的研究也发现长期干旱对人工林的危害大于短期干旱。因此,为了最优化人工林的功能,同时减少对人工林灌溉水的需求,建议在春季和长期干旱发生时灌水比其他时期灌水更有利于区域人工林的经济可持续发展。