论文部分内容阅读
多核金属簇合物已经成为当今化学研究中最活跃的研究热点之一,不仅因为它们具有纳米尺寸的分子结构,而且还表现出有趣的光、电、磁和催化性质。但目前的研究绝大多数集中在多核过渡金属簇合物上,多核稀土和多核稀土—过渡金属簇合物的研究相对较少。本论文中,我们在多金属氧酸盐配位聚合物、多核稀土簇合物和多核稀土—过渡金属簇合物的合成、结构与性质方面展开了系统的研究,其主要内容和创新点包括:一多金属氧酸盐配位聚合物的组装调控。(1)通过控制反应的pH值合成了从零维到三维的Keggin型多金属氧酸盐配位聚合物(1-5)和(6-7);(2)利用不同的阴离子,合成了两个Dawson型多金属氧酸盐配位聚合物(8-9)。晶体结构分析显示,pH值和阴离子对于多酸配位聚合物的拓扑结构有重要的影响。二提出了静电作用组装的多金属氧酸盐微孔配位聚合物的方法。利用静电作用组装多孔配位聚合物的新思路,合成表征了4个静电作用导向的Keggin型微孔多金属氧酸盐配位聚合物(10-13)。晶体分析表明,二维网状格子与多酸的大小关系对合成开放式的多孔金属有机框架有重要的作用。三多核稀土簇合物。(1)利用苏氨酸配体,合成了四个手性的六十核稀土簇合物(14-17),这也是目前发现的核数最高的稀土簇合物。结构分析表明,阴离子的模板作用在高核金属簇合物的形成过程中起到非常重要的作用;(2)利用烟酸配体控制稀土离子的水解反应,通过控制反应过程,合成了四核稀土簇合物(18-19)和八核稀土簇合物(20-21),实现了对稀土簇合物结构的组装调控。四多核稀土配位聚合物的组装。(1)基于氨三丙酸配体,在不同的pH值条件下合成了六核稀土簇合物组装的3D大孔配位聚合物(22)和双核稀土组装的1D(23)、2D(24)配位聚合物;(2)在不同的阴离子的条件下,合成了一系列双核稀土组装的3D金属有机框架(25-34),对金属有机框架选择性分离阴离子的研究,揭示了水簇对于阴离子的选择性识别的重要作用五高核稀土—过渡金属簇合物。基于亚氨基二乙酸配体合成了一系列50核Ln20Ni30(35-36)、41核Ln20Ni21(37-38)、108核Gd54Ni54(39)和Ln52Ni56(40-44)、以及136核Ln60Ni76(45)高核稀土—过渡金属簇合物。其中,Ln20Ni30是一个具有Keplerate结构的双壳层铁磁性簇合物;Gd54Ni54和Ln52Ni56具有一个四壳层的俄罗斯洋娃娃形的嵌套结构;Ln60Ni76是目前发现的核数最高的稀土—过渡金属簇合物。四种系列的稀土—过渡金属簇合物合成揭示了配体原位分解产生的阴离子对高核簇合物形成的关键作用。六多核稀土—过渡金属配位聚合物的组装。(1)以金属络合物配体和第二辅助配体为构筑基元,合成了一系列基于“Ln6Ni4”,“Ln6Ni2和“Ln6Ni4+Ln6Ni2”三个系列的稀土—过渡金属微孔配位聚合物(46-54)。结构分析表明,通过控制反应的条件,可以实现金属有机框架中孔道形状与大小的组装调控;(2)基于H4CDTA螯合配体,合成了一个包含“Ln12Ni24”和“Ln24Ni12”两种金属有机多面体结构的沸石型配位聚合物(67)。同时,本论文还合成了一系列稀土配位聚合物(55-66)和混价铜配位聚合物(68-69)。