论文部分内容阅读
作为生产和生活的动力支持,柴油机一直作为核心部件工作在车辆、舰船、电力等各个领域,是当前推动国家发展的重要支持。柴油机工作过程中,环境往往复杂多变,运行过程中会受到各种未知因素的干扰,运行过程中一旦发生故障,可能会对生活生产造成影响。出现故障时,轻则延缓工作进程、降低效率,重则可能造成机组损毁,甚至伤及现场工作人员。对柴油机的故障诊断进行研究,保障柴油机工作过程中的良好稳定运行,有助于在出现故障的时候能够迅速做出诊断,从而为后期工作铺垫,保障生活生产的顺利进行,维持安全可靠性。因此,对柴油机故障诊断进行研究具有重要的意义。本文以柴油发动机为研究对象,在对常见故障的研究基础上,以提高故障诊断准确率为工作目标,结合故障诊断的实际应用,提出了有效的柴油机故障诊断方法,改善了故障诊断技术,并利用相关故障模拟实验和实际工程故障案例进行验证。本文的主要研究内容包含以下部分:首先,针对运行环境工况变化,结合故障诊断中测试训练数据分布特点,开展变工况下故障特征提取方法研究。提出一种基于领域对抗网络的故障特征提取方法,建立了领域对抗网络模型,提高了训练与测试数据不受工况环境变化影响的分析处理能力,降低了数据来源对诊断结果的影响,实现了与训练集样本差距较大情况下的故障特征提取过程,并通过故障模拟实验对提出方法进行了验证。其次,结合概率图模型原理和故障诊断技术,开展柴油机故障概率推理方法研究。针对三种柴油机常见故障类型,建立了多层网络的故障概率诊断模型,通过对信号和机组零部件寿命状态的分析,实现对潜在故障发生可能性的概率推理。对诊断网络框架进行了设计,确定了故障类型与信号特征的网络节点对应关系,并通过模拟实验对提出方法进行了验证。最后,基于故障特征和柴油机的结构特性研究结果,开展柴油机缸内失火故障诊断方法研究。提出了一种基于多信号特征的柴油机故障诊断方法,建立了失火故障诊断网络,确定了缸头节点与信号成分节点的多状态对应关系,降低了诊断模型参数设置的复杂度,实现了结合辅助推理的故障诊断,通过多工况失火故障实验对提出方法的诊断稳定性进行了验证。本文对柴油机故障诊断进行了研究,提出了故障诊断新方式,扩宽了柴油机故障诊断研究思路,为柴油机的良好工作运行提供了保障,在实际工程运用上具有重要的意义。