论文部分内容阅读
函数插入是一般拓扑学中的一个经典分支。可数中紧性是一类重要的覆盖性质,本文主要研究了具有可数中紧性的几类空间与函数插入之间的关系。在第二章,我们研究了可数中紧空间的性质,得到了关于可数中紧空间的若干映射定理,讨论了可数中紧空间、单调可数中紧空间与函数插入之间的联系。在第三章,我们引入了K完全空间的概念,利用其等价刻画得到了关于K完全空间的映射定理,分别给出了其Urysohn Lemma形式与半连续插入形式的刻画。