【摘 要】
:
全无机卤化物钙钛矿材料溴铅铯(CsPbBr3)因为其卓越的光学和电子特性而被认为是最具有潜力的下一代核辐射探测器材料。CsPbBr3具有相对较大的禁带宽度、较高的有效原子序数、较大的载流子迁移率寿命积和较大电阻率等优秀特性,因而受到了广泛的关注。本文主要研究了CsPbBr3单晶制备工艺的优化及CsPbBr3光电探测器的探测性能。首先,我们采用化学共沉淀法合成CsPbBr3多晶粉体作为晶体生长的原料
【基金项目】
:
国家自然科学基金面上项目“高能射线探测用新型三元化合物半导体垂直温度梯度凝固法生长及其研究”(项目批准号No11575065);
论文部分内容阅读
全无机卤化物钙钛矿材料溴铅铯(CsPbBr3)因为其卓越的光学和电子特性而被认为是最具有潜力的下一代核辐射探测器材料。CsPbBr3具有相对较大的禁带宽度、较高的有效原子序数、较大的载流子迁移率寿命积和较大电阻率等优秀特性,因而受到了广泛的关注。本文主要研究了CsPbBr3单晶制备工艺的优化及CsPbBr3光电探测器的探测性能。首先,我们采用化学共沉淀法合成CsPbBr3多晶粉体作为晶体生长的原料,采用电控动态梯度凝固法(EDG)生长CsPbBr3晶体。研究发现,化学共沉淀法由于工艺流程复杂,工艺条件难以准确控制,因而合成的粉体中的各元素比例容易偏离理论化学计量比1:1:3,粉体中含有较多副产物比如Cs Pb2Br5和Cs4Pb Br6。使用该粉体生长得到的晶体质量较差,晶体的红外透过率约为60%,电阻率相对较低,仅为5.24×107Ωcm,载流子迁移率寿命积(μτ)仅为1.96×10-5cm2/V,难以达到高性能核辐射探测的基本要求。其次,我们采用改进的固相法合成CsPbBr3多晶粉体,通过在晶体生长前引入对流过程来使粉体反应更加均匀。在11℃/cm的对流温度梯度下对流5小时所得晶体质量最佳,晶体的红外透过率接近80%,电阻率相对较高,可达到6.48×109Ωcm,具有良好的载流子传输特性,晶体的μτ达到了3.98×10-4cm2/V,各方面性能均达到了高性能核辐射探测器的基本要求。当对流时间为8小时及以上时,晶体均沿着(110)面(或者其平行面)生长,晶体生长存在择优取向。最后,我们制备了Au/CsPbBr3/Au结构的光电探测器。探测器对365nm脉冲激光具有明显探测响应,在0.1V偏压下,其响应信噪比可达到32,具有极快的响应速度(0.045s)和较快的恢复速度(0.188s);探测器对X射线具有明显的探测响应,当辐射剂量为5.5m GyairS-1时,在-1V偏压下,其响应信噪比可达到20,在-100V偏压下,灵敏度最高可达到4.186×103μCGy-1aircm-2;探测器对241Am(5.48Me V)α射线具有一定探测响应,单信号响应信噪比可达到27,多道能谱响应在300V偏压下具有最高能量分辨率约为27.8%。
其他文献
企业工会是我国工会的重要组织,其工作直接联系和服务职工群众,是企业凝聚力和创造力的重要基础,也是落实工会各项工作的组织者、推动者和实践者。大型国有企业作为我国经济发展的主要支柱,对国民经济的发展起着关键作用,大型国有企业工会的各项职能发挥也能大大的促进国有企业的发展。随着国内政治、经济形势的不断变化,特别进入新时代,全国工会组织和大型国有企业改革的不断深化,企业利益各级深刻调整,员工思想观念不断更
工程地产领域容易滋生贪污腐败案件,存在较大的廉洁从业风险。开展反腐倡廉,更有效地将腐败问题扼杀于萌芽状态的重要手段是廉洁风险防控。
随着教育事业的发展,各个学科各个领域呈现出焕然一新的面貌,体育作为培养学生综合素质和锻炼意志品质的重要科目取得了巨大进步,尤其是短跑这类训练强度大的田径运动,力量作为短跑运动的核心素质必须结合实际科学设计和引导,达到提高短跑中的力量训练效果,为提升短跑运动员的整体运动水平做好铺垫。
由于超高速激光熔覆技术具有效率高、熔覆层质量好的优点,在电镀行业、表面涂层领域和激光增材制造领域具有巨大的应用前景。本文系统分析了激光熔覆同轴送粉流场和温度场的理论模型,开发了一种基于非稳态粒子追踪技术的综合性激光熔覆粉末温度场模型,利用模型研究了不同工艺参数下粉末对激光产生的能量衰减,以及不同参数下粉末温度场的变化规律,并针对能量衰减模型和超高速激光熔覆工艺进行了实验与分析。论文的研究工作如下:
可充电锂离子电池被认为是未来大规模应用中最有前途的储能装置之一,包括便携式电子设备、电动汽车和电网。然而,使用易燃液态电解质的传统锂离子电池可能会导致严重的安全问题,如电解液泄漏、热失控、燃烧和爆炸等。固态电池被认为是解决这些问题的最佳选择之一,消除了电解液泄漏带来的问题,提高了安全可靠性。此外,使用固态电解质(SSEs)可以获得更高的能量密度,特别是采用锂金属作为负极,它具有最高的理论容量(38
随着目前大数据与人工智能技术的快速发展,传统机械制造业的逐渐转型是必然趋势。轴承作为旋转机械设备中最为典型的部件之一,它的运行状态对旋转机械设备的正常运行至关重要。因此,开展轴承的故障诊断研究具有重要的理论和实际意义。传统的轴承故障诊断研究大多是基于振动信号进行时频域特征提取来完成诊断任务,而在实际的工厂车间中,因存在高腐蚀和高温等恶劣环境,导致仅通过接触式采集的振动信号不能满足轴承的故障诊断需求
随着经济的发展,人们对玻璃的需求越来越多,质量要求也越来越高。但目前国内绝大多数生产厂家仍然采用人工检测的手段,从而导致生产效率低下,成本高昂及质量控制不严格等问题的出现。在本文中,利用图像处理技术对平面玻璃缺陷进行自动检测。本文以平板玻璃为被检测对象。本文研究的表面缺陷主要包括划伤缺陷、气泡缺陷以及爆边缺陷,提取各种缺陷的特征参数,用来作为评定平板玻璃是否合格的重要指标,实现自动、实时、准确的缺
事业单位人员年度考核工作是人事管理中的一项重要工作,对于激励先进,推动形成干事创业的良好氛围具有重要作用。机构改革在增强事业单位活力的同时,也给重新组建的事业单位在人员年度考核工作的开展带来困扰。现以某事业单位2020年度人员考核工作为例,探索具体可行的考核办法。基本情况2020年下半年,因机构改革,由职能相近的9个事业单位新组建设立某单位(以下称该单位),为县级事业单位。基于该单位承担的职
自第二次工业革命以来,大量化石能源燃烧造成的大气中温室气体CO2浓度剧烈上升引起了包括全球极端气候频发,生态大改变,物种灭绝等一系列灾难。为了遏制地球大气中的CO2浓度进一步上升,以CO2为碳源合成高附加值药物分子的合成路径吸引了科研界的广泛关注。其中,胺类化合物的甲酰化和甲基化反应因其产物在药物中的广泛应用而被广泛研究。针对目前该领域中依旧存在的催化剂易分解、制备繁琐、腐蚀性强以及催化剂回收,产
金属氧化物半导体气体传感器具有灵敏度高、制作成本低廉、响应速度较快、使用寿命长等优点,已被广泛应用在环境监测、工业制造、人身安全和医疗诊断等各个领域。氧化锌(Zn O)具有3.37 e V宽禁带、60 me V大激子结合能、高电子迁移率、优异的化学和热稳定性等特性,是应用广泛的金属氧化物气敏材料之一。然而,传统的Zn O气体传感器一般需要在高于300℃的温度下工作,室温下难以恢复,灵敏度低,限制了