论文部分内容阅读
微振动测量是工程技术领域重要的研究方向,常用的微振动测量方法是利用光的干涉进行非接触式无损测量。激光自混合干涉(Self-Mixing Interference,SMI)测量以结构简单、灵敏度高、耐腐蚀、稳定运行在恶劣环境下等多种优势,引起微振动测量领域专家学者浓厚的研究兴趣。与常用的半导体激光器相比,全固态激光器具有频率稳定性高、能量存储能力强、线宽窄等优点,成为激光自混合干涉微振动测量系统的首选光源,因此设计并开发全固态激光器自混合干涉微振动测量系统具有广阔的工程应用前景。论文的主要研究内容包括以下几方面:首先,在综述激光自混合干涉测量技术研究现状的基础上,设计了用于低频微纳米量级振动测量的二极管端面泵浦Nd:YAG微片激光器自混合干涉测量方案,建立了SMI振动测量的数学模型,并进行了数值仿真,仿真结果表明了 SMI模型的有效性和微振动测量方案的可行性;其次,建立了二极管端面泵浦Nd:YAG微片激光器自混合干涉微振动传感实验系统,并进行了实验研究,实验获得了性能稳定的自混合干涉信号;设计了自混合干涉调理电路,包括电流电压转换、信号放大、滤波等电路,并对其进行功能测试,测试结果表明,调理电路设计合理,能够对SMI信号提供良好的预处理;最后,设计了基于FPGA的SPI串行数据采集与传输系统和自混合干涉振动测量算法,经数据处理后求得微振动的频率和幅值。在现有实验条件下,频率测量范围为30~200 Hz,振幅测量范围为0~15μm,测量频率的相对误差不超过0.63%,测量振幅的相对误差不超过9.36%。达到了预期实验目标。综上所述,本论文设计的全固态激光器自混合干涉微振动测量方案可行。该项研究是一种具有实用意义,且价格相对低廉的高精度微振动测量系统设计,为以后进一步开展微振动测量研究与应用奠定了基础。