基于单光子激光雷达的运动目标距离轨迹提取算法研究

来源 :中国科学院大学(中国科学院上海技术物理研究所) | 被引量 : 0次 | 上传用户:mo114
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
单光子激光雷达是一种先进的主动光电探测技术,能够充分利用探测器接收到的每一个光子信号,具有探测效率高、距离远、微弱信号探测能力强等优点。目标信号提取算法作为激光雷达的数据处理技术,可以获取目标距离、速度等有效信息,但现有的信号提取算法主要针对有准确轨道预报的目标,对于缺乏目标距离、速度及噪声等先验信息的未知场景不完全适用。因此,本文基于单光子激光雷达测距系统,以无先验信息的高速运动目标为主要研究对象,研究激光雷达数据处理技术,实现千公里级未知目标距离轨迹的实时提取。首先,深入研究了运动条件下接收光子的回波特性,分析得出目标信号强度随着探测距离和激光入射角度的增大迅速衰减,为了更加接近真实的测量环境,模拟了多种目标运动状态和探测概率,生成了信号丢失、抖动误差等不同条件下的激光雷达点云数据。针对典型场景下的高速运动目标,提出了基于标准Hough变换的距离轨迹提取算法,该算法利用目标回波点之间的时间相关性将直线检测算法引入回波信号的提取。提出的基于运动斜率的改进实时距离门有效降低了距离门内噪声,对于运动速度快的目标效果尤为明显;分析得出标准Hough变换中算法测距精度和计算量均随着参数空间分辨率的提高而提高。实验结果表明:在探测距离900 km,噪声强度0-6000 counts/s的范围内,对于速度5-12 km/s,加速度0-100 m/s2的运动目标,该算法可以实现典型场景下未知目标的距离轨迹实时提取,距离均方根误差优于2.72 m,对空间碎片实测目标可以达到同样的提取效果。针对具有一定运动加速度的拓展目标,提出了基于改进Hough变换和随机Hough变换的距离轨迹提取算法。通过对算法原理和计算参数的分析,探讨了两种算法的各自优缺点和适用场景,实验结果表明:两种算法的测距精度不受目标运动加速度的影响,均能适应加速度-500-500 m/s2的非匀速运动场景,距离均方根误差分别优于2.48 m和0.75 m。本文深入研究了单光子激光测距距离轨迹提取算法,提出的标准Hough变换算法能够准确实时地提取高速无精确预报目标的距离轨迹,具有抗噪性强,提取速度快等优点。改进Hough变换和随机Hough变换距离轨迹提取算法有效解决了非匀速运动场景下标准Hough变换算法距离误差较大的问题。本文的研究内容拓展了单光子激光测距系统的应用场景,为后续空间非合作目标的激光测距数据处理提供了新的途径。
其他文献
多变价态的钒元素造就了种类繁多、特性各异的钒氧化合物体系,而金属-绝缘体转变无疑是该体系的基础研究和应用备受关注的特性之一。该转变过程中,飞秒级的电导转变速率促进了氧化钒材料在探测、开关、存储等先进电子器件中应用。值得关注的是,关于氧化钒材料金属-绝缘体转变的研究在上世纪60年代就已展开。然而,转变的物理机制一直是氧化钒材料体系中未能解决的关键问题之一。其研究难点一方面在于金属-绝缘体转变通常伴随
光在人类认知这个世界过程中扮演着重要的角色,也一直是物理学中重要的研究方向。随着人类对光的本质的不断理解加深,从最初微粒说到波动说再到最终光的波粒二象性的准确描述,引发了多次光学上的重大突破。然而,构成这些光学系统的自然材料的可调控自由度有限,无法对光的振幅、相位以及偏振等诸多性质都进行精确操控,也难以满足现代化高性能、多功能以及小型化的需求。上述问题的出现,促使了人们开始尝试利用由亚波长人工设计
目的探讨家属赋能教育模式在骨质疏松脊柱压缩性骨折(OVCF)患者健康教育中的应用效果,为优化此类患者护理模式提供参考依据。方法选取2020年6—12月某医院收治的骨质疏松脊柱压缩性骨折患者116例为研究对象,按照组间基线资料匹配的原则将患者分为对照组和干预组,每组58例,两组均给予常规护理及健康教育,干预组同时给予家属赋能教育模式。比较两组入院时、出院前日常生活能力(Barthel指数)评分、健康
量子阱-发光二极管(QWIP-LED)上转换红外探测器将中波红外信号转换为近红外光,并由大面阵硅基CCD直接读出,因此具有制备成为大规模、高质量、低功耗红外探测器的潜力,成为红外探测的一种新途径。目前基于QWIP-LED的量子效率的研究主要集中在提高QWIP的光响应上。但由于近红外LED的光读出效率受全内反射效应影响,有效出光效率仅为1%至2%左右,因此QWIP-LED的探测效率和成像质量受限于L
声音分类是机器学习领域的一个重要分支,一般将它细分为环境声分类,人声分类、音乐分类三个大类。近年来随着DCASE等比赛的举办,也让越来越多的学者开始重视这一领域的研究。目前这项技术在医疗诊断、场景分析、声者识别、生态环境分析等场景中都被广泛使用。传统声音分类方法主要使用神经网络来实现,虽然它们的准确性不断提高,但是这种方式目前还有两个问题。首先是在数据的预处理方面,使用神经网络进行声音分类任务一般
红外弱小目标检测与主动跟踪是红外搜索跟踪系统(Infrared Search and Track,IRST)的核心技术,在民用航空安全监测有着至关重要的作用。由于成像距离极远以及红外探测器本身成像的特性,红外弱小目标在图像上总是呈现成像像素少、局部信杂比极低的特点,为红外弱小目标的检测和跟踪带来极大的困难,造成检测的精度不高,漏检率偏高的局面。本文在前人工作的基础上,以提高天空背景极低局部信杂比下
随着医疗信息化的进程不断发展,医疗数据呈现爆炸式增长,医疗大数据的传输、存储、处理和可视化方面都面临着不小的挑战。医疗机构信息系统相互独立,在各项政策的引导下建立了电子病历系统、区域(或跨域)电子健康档案平台、区域数据中心等,病人数据量的不断增多导致医生在查询病人历史记录时存在操作繁琐、数据展现延迟、效率低等问题。如何解决医疗机构内和机构之间医疗数据的传输和存储问题已经成为当前医疗信息系统的短板。
在自由空间激光通信及量子通信中,由于空间激光束散角较小,需要利用捕获(Acquisition)、跟踪(Tracking)、瞄准(Pointing)(ATP)系统来实现通信链路的构建和保持。ATP系统通过将目标光斑在面阵探测器上的位置变化与跟踪机构形成闭环控制,以实现精确跟踪与指向,具备多信息维度、灵活变窗等优点,但是面阵探测器上信标光斑位置的探测精度将会直接影响整个ATP系统的跟踪指向精度。本文面
空间激光通信是以激光为信息载体的一种新兴的通信技术。与传统的射频通信相比,激光通信在深空超远距离传输时在通信速率、抗干扰性、保密性等方面表现更为优异,且无需申请频段许可,终端设备体积小、重量轻,被称为有望替代射频通信的下一代深空通信技术,得到了各航天大国的青睐。由于具备单光子探测能力且便于集成,自由运转盖革雪崩光电二极管(Geiger-mode Avalanche Photon Diode,Gm-
随着机器视觉的发展,针对红外图像目标检测与识别技术的需求也在不断增长。红外面阵扫描系统具有探测能力强、扫描效率高等特点,基于该类设备的算法研究成为了红外机器视觉领域的研究热点之一。通常情况下,红外面阵扫描设备为方便人员监控与算法处理,首先需要在水平方向上拼接输出图像,但在工作过程中受转速不稳、平台震动的影响,难以生成稳定的全景图像;其次面阵扫描输出速率高,数据量大,对算法运行速度有较高要求;此外受