论文部分内容阅读
问题驱动理论是弗赖登塔尔数学教育观的进一步延伸,是其“再创造”思想的具体化。它倡导教师借助数学史深入到数学学科内部剖析教学内容,挖掘知识产生的背景与价值、数学思想方法的形成过程,再结合数学课程标准的要求和学生的实际创设真实有效的问题情境驱动数学教学。以问题驱动教学揭示数学本质是中学数学课堂教学研究的趋势所在,也是数学学科教学的要求。本研究以高中“圆锥曲线与方程”单元为例,基于问题驱动重构教材内容与组织教学,探索如何将问题驱动教学理论与教学实践相融合。研究主要对以下四方面的内容进行了阐释:(1)对“圆锥曲线与方程”单元的相关教学研究文献进行综述,梳理已有的文献成果以获得研究启示;介绍问题驱动教学理论,指出“问题”的内涵与“真实有效的问题情境”的实质,为后面的研究提出理论依据。(2)对圆锥曲线的历史发展脉络进行了梳理分析。通过对相关数学史的梳理以明晰两个重要问题:圆锥曲线是为了解决什么问题而产生的?人们为什么要研究圆锥曲线?圆锥曲线的历史脉络还展现了圆锥曲线与自然科学、数学学科各分支的密切联系。从历史中获得教学启示,进而为“圆锥曲线与方程”单元的教学重构提供有力支撑。(3)对高中数学三个不同版本的“圆锥曲线与方程”单元的教材内容进行比较与分析。从知识体系与内容安排、栏目设置、章节引入方式、概念与性质的呈现方式及章末回顾五个维度剖析了不同教材的编写特点及其存在的不足,从而论证了对“圆锥曲线与方程”单元进行教学重构的必要性。(4)基于问题驱动的教学理论,依据对圆锥曲线历史发展的剖析结果、相应的教材分析情况以及对知识的整体把握,结合学生的实际对“圆锥曲线与方程”单元进行教学重构。教学重构强调以单元为主体进行整体设计,以问题驱动具体课时的教学。教学设计与教学实践致力于解决“圆锥曲线与方程”单元教学的四个关键,即:实现从空间中的原始定义自然过渡到平面上的第一定义;突出椭圆、双曲线与抛物线特性的同时揭示三者之间的内在统一性;对圆锥曲线“离心率”概念一致性的理解;恰当运用圆锥曲线光学性质组织教学。本研究的主要成果有:(1)实现了基于问题驱动的“圆锥曲线与方程”单元教学重构。依据问题驱动理论,梳理了圆锥曲线的历史发展脉络获得教学启示,从数学的学科结构深入剖析教材内容,再结合对数学课程标准的整体认识以及学生的实际重构教学内容与顺序。教学重构紧扣三条主线以问题驱动展开教学,即Dandelin双球模型、圆锥曲线的光学性质、圆锥曲线内部知识点之间的密切联系。以期通过对教学单元的整体组织设计,问题驱动教学促进学生对学习内容的深入理解,获得知识之间联系丰富的整体结构以及相应的数学思想与方法。(2)形成了一套完整的“圆锥曲线与方程”单元的课时教学设计,为中学数学教师提供了可借鉴的教学研究范式。按照“圆锥曲线与方程”单元的教学重构组织顺序给出了一套完整的课时教学设计方案。课时教学设计分为三个部分:单元起始课的教学、具体概念与性质的教学、单元复习课的教学。三个部分的教学设计彼此联系、逐步铺垫且前后呼应,最后形成一个有机整体。通过教学重构可以解决前面提及的“圆锥曲线与方程”单元的四个关键的教学问题。让学生通过学习最终形成对圆锥曲线内容的整体认识,充分体会到知识间的相互联系性以及蕴含在知识之上的数学思想与方法。如何将问题驱动理论运用于数学教学?问题驱动中学数学单元的教学重构,强调整体解读教学内容并进行有效的教学组织与设计。本研究的探索过程为一线教师提供了运用问题驱动理论剖析教材与组织教学的研究范式,为整体把握数学教学内容结构、具体课时的教学组织提供了思考的方向,具有参考借鉴价值。(3)丰富了问题驱动教学理论。问题驱动教学从教育哲学层面深入到数学内部去剖析知识产生的背景与价值,从而了解数学教育的价值以创设能反映数学本质的问题情境驱动数学教学,重在“为什么教”进而到“如何教”。本研究关于“圆锥曲线与方程”单元的教学重构和课时教学设计,是对问题驱动教学理论的实践探索和反思,是对已有理论体系的有益补充。研究从整体的视角,依据数学史与数学学科结构解读教学内容、揭示数学本质及追溯知识产生的根源。在此基础上结合基础教育数学课程标准的要求和学生实际重构教材对教学内容进行“再创造”,创设真实有效的问题情境以问题驱动教学,再现知识的生成过程。因此,研究有助于促成教师教学观的转变也有助于促成学生学会“数学地思考”。