论文部分内容阅读
高温超导(HTS)材料作为下一代聚变装置CFETRCS线圈材料的选择之一,具备高临界特性优势,是高场磁体的最佳选择。失超检测技术研究作为新型磁体研制过程中的关键课题,是磁体系统安全运行的前提保障。本文从HTS的失超传播机理研究出发,在现有技术无法满足HTS磁体安全探测的基础上,探索新型失超检测技术;建立HTS磁体前期研制阶段的带材、电缆到线圈的多尺度结合的失超传播模型;同时针对磁体提出模型设计方案,设计相关超导带材失超探测平台并完成大量实验,完成新技术校验与模型可行性分析;结合新型失超检测技术,提出了面向HTS磁体的失超检测系统,为保障未来大型HTS磁体安全运行提供科学经验。本论文主要内容与创新点概括如下:基于HTS带材失超机理研究,开展面向HTS磁体的失超传播特征参数分析,与传统低温超导(LTS)失超特性相比,突出了 HTS磁体失超检测技术的难点与重要性。开展了基于光频域反射(OFDR)的分布式光纤传感技术(DOFS)的新型失超检测研究,利用瑞利散射信号的相干特性,实现HTS磁体的失超检测。该技术可实现mm级实时可调的空间分辨率,通过低温实验,得到分布式光纤超低温(4.2K)的定标曲线,提出基于正常区域长度(Lmpz)的失超逻辑判别算法,并详细分析该技术用于HTS失超特性探测的可行性。基于OFDR技术系统性的完成了 HTS电流引线样品、带材级双饼线圈技术校验与CORC结构缆失超传播实验,对比传统失超检测方法(VTs)具有明显优势:能够准确捕捉到正常区域的发展边界与热点定位,可提前探测到热点特性变化,实现失超空间连续性的分布式测量,完全避免电磁噪声,实现光纤嵌入式的布线,能够应对复杂磁体结构,探索光纤结构可直接植入磁体绝缘材料中,进一步验证新型检测技术可以用于HTS磁体的失超信号检测,对HTS磁体失超检测意义重大。国内首次联合开发了 ReBCO CORC结构电缆的三维多物理场耦合动态失超模型:详细分析了接头电阻对带材间的分流特性影响,以及不同热脉冲下的失超特性,经过样品实验校验模型可靠性,为CORC结构的HTS磁体失超检测技术研究提供理论分析模型,对HTS电缆未来能运用到聚变磁体上做了大量的工作,并对其后续的性能评估和安全运行提供了有效的新手段,具有重要作用。基于实验平台建立了 ReBCO双饼线圈三维失超模型,对平台内部样品线圈开展模拟分析,实现了稳态耦合场分析及热脉冲下的非绝缘ReBCO双饼线圈的失超特性研究。最后,借鉴LTS成熟失超检测经验,融合新型失超检测技术,结合失超模型分析,采用主失超检测与辅助检测并行的方法,提出面向HTS磁体的失超检测系统设计。