【摘 要】
:
实数或复数的超越性是数论的基本问题之一。虽然我们知道几乎所有的实数或复数都是超越数,但要判断一个给定的实数或复数是否为超越数则通常极为困难。现代数论给我们的启示是:同样的问题放在有理数域或正特征函数域上时,在处理技巧上会呈现出许多共性和差异。本文从函数域的角度出发来研究形式幂级数的线性相关性、超越性以及代数独立性,主要包括以下四个方面的内容:一.线性无关性判别准则:我们在正特征函数域上给出了判断形
论文部分内容阅读
实数或复数的超越性是数论的基本问题之一。虽然我们知道几乎所有的实数或复数都是超越数,但要判断一个给定的实数或复数是否为超越数则通常极为困难。现代数论给我们的启示是:同样的问题放在有理数域或正特征函数域上时,在处理技巧上会呈现出许多共性和差异。本文从函数域的角度出发来研究形式幂级数的线性相关性、超越性以及代数独立性,主要包括以下四个方面的内容:一.线性无关性判别准则:我们在正特征函数域上给出了判断形式幂级数线性无关性的一般准则,该准则包含了现有的许多线性无关性和超越性判别准则。作为应用,我们利用该准则证明了ec和1/πc等超越元的σ-代数独立性,Carlitz指数函数和Carlitz对数函数在有理点处值的线性无关性,以及一类广义Carlitz-Goss gamma函数值的超越性。二.代数独立性判别准则:我们得到了判断一类快速收敛的形式幂级数代数独立的判别准则。利用该准则,我们解决了正特征函数域上的Liouville形式幂级数的代数独立性问题。三.超几何函数特殊值的超越性:一方面,我们对一大类特殊的超几何函数建立了 T-模函数方程,然后利用正特征函数域上的Schneider-Lang定理,得到了关于这些超几何函数的特殊值的一些超越性结果。另一方面,对于正特征函数域上的超几何整函数在非零代数点处值的弱超越性,我们给出了一个更为直接的证明。四.四指数猜想:利用Papanikolas证明的正特征函数域上Carlitz对数函数特殊值的代数独立性,我们借助经典超越数论的典型方法证明了正特征函数域上的四指数猜想。
其他文献
随着科学技术的发展,用于描述实际问题的数学模型日益复杂,通常都包含有多个尺度,因而多尺度建模与多尺度计算方法已经成为科学与工程计算领域最重要的研究方向之一,而奇异摄动问题的渐近分析与数值求解则是多尺度建模中的一个重要研究课题。尽管奇异摄动问题会呈现出一定的非典型性,但它可以帮我们更好地对物理问题进行定性和近似定量的理解。本文主要研究奇异摄动特征值问题与奇异摄动电报方程的渐近分析与数值求解。奇异摄动
在众多理论与工程力学问题中,随机性和奇性是普遍存在的两类性质。随机性与奇性的出现在理论上与数值上都给力学问题的研究带来挑战。传统的数值方法在该类问题上的直接应用会面临求解开销大、数值解收敛速度慢等问题。因此,根据问题的特性设计出具有良好理论性质的高效数值方法显得十分重要。我们首先研究了带随机外势的薛定谔方程,探究随机配置法在该方程求解上的应用。由于随机配置法的理论基础为多项式插值原理,因此随机配置
在经典的常微分方程的应用中,有一类重要的方程是研究弹簧受迫振动现象的,弹簧的外力是一个已知的函数.但在现实中,弹簧振动会受到空气或者材料摩擦等因素,外力往往存在一定的扰动.一些学者运用概率论中的Wiener过程去刻画扰动项,从而用随机弹簧振动方程描述弹簧的振动现象.但是用随机弹簧振动方程描述现实中的弹簧受迫振动现象真的合理吗?本文将给出随机弹簧振动方程的一个反例,说明用随机弹簧振动方程描述弹簧振动
耦合非线性Schr(?)dinger方程组出现在Bose-Einstein凝聚和非线性光学等物理问题中。近十几年来,该方程组引起了很多著名数学家的兴趣,并得到了大量重要的研究成果。本文的第一个主要内容是运用椭圆方程的理论研究耦合非线性Schr(?)dinger方程组驻波解的性质,并探索该方程组的耦合系数对驻波解性质的影响。这对理解耦合非线性Schr(?)dinger方程组的全局动力学是至关重要的。
本论文报告了作者作为第一完成人设计和搭建的一台全新的超冷锂锶混合气体实验装置,以及利用该装置实现的锂6原子灰色光学黏团冷却,锶84原子玻色-爱因斯坦凝聚,和首个光阱囚禁的超冷锂锶混合。利用光阱中热化测量,作者首次给出锂6原子和锶88原子间s波散射长度大小。本实验装置包括超高真空系统、激光系统、磁场线圈系统和时序控制系统等。为使真空系统兼容锂锶两种原子,我们设计了双组份原子喷炉,双组份原子塞曼减速器
我们引入(a,η)型区域的概念,对区域边界的凸性作了更细致的分类。通过选取适当的辅助函数,得到了解的先验估计,从而证明了有界区域上一类退化或奇异Monge-Ampere型方程Dirichlet问题解的存在唯一性,并得到解相应的边界H¨older模估计。从而,我们发现了解的边界正则性和区域的凸性之间的对应关系。我们所研究方程的一种特殊情形,例如双曲仿射球方程,和一些重要的几何问题相关。在这些情况下,
这篇论文是基于几篇我和导师丘成栋教授的合作文章。主要目的在于研究孤立奇点的导子李代数.孤立奇点的导子李代数的定义如下:令V是为原点附近的一个孤立奇点,它由解析函数f:(Cn,0)→(C,0)定义.L(V)定义为模代数A(V)的导子李代数.它是一个有限维可解代数,在研究奇点中起到重要作用.L(V)被称作丘代数,而λ(V)表示L(V)的维数,被称为丘数.有一类新的k-阶丘代数Lk(V),定义为模代数A
黎曼流形的分类问题一直是微分几何中一类重要的问题。本文给出了一些特殊的黎曼流形上的刚性定理。主要内容如下:1.令(Mn,g)(n≥ 4)为n维紧致局部共形平坦黎曼流形,有常数量曲率和常Ricci曲率张量的平方和。运用活动标架法,我们证明了 Ricci曲率张量有三个不同特征值的黎曼流形是不存在的。2.我们证明了一个n维(n≥ 4)紧致Bach平坦流形若它的数量曲率为正且σ2是正常数,且Weyl张量满
本文研究了蒙日-安培型方程的一些性质,包含一类蒙日-安培型方程解的径向对称性,以及一类以蒙日-安培型方程为特例的非线性奇异椭圆方程解的边界H(?)lder估计。我们先对一类来自于一些几何问题的蒙日-安培型方程解的对称性进行了讨论,在适当的结构性假设条件下,使用一种新的变换分析了解在无穷远处的渐近行为。进而结合移动平面法,证明了方程凸解的径向对称性。其次,我们研究了一类包含蒙日-安培方程、K-海森方
外尔半金属是一种新奇的拓扑物态,其低能激发与高能物理中外尔费米子遵循相同的规律。由于凝聚态系统更为多样的结构对称性,和丰富的相互作用,在一类正交相的过渡族金属二硫化物系统中还存在违背Lorentz不变量的第二类外尔费米子,并且这种新奇粒子没有标准模型粒子与之对应。尽管过去几十年凝聚态物理学家对过渡族金属二硫化物体系中的谷电子学、能隙可调半导体、电荷密度波以及超导的研究取得了巨大的进展,然而实验上对