具有高迁移率的P型GaN器件的研究

来源 :电子科技大学 | 被引量 : 0次 | 上传用户:l441060226
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
半导体功率器件是半导体领域不可缺少的一部分,半导体材料经过几十年的飞速发展,已经迭代到了第三代。其中的GaN因为具有大的禁带宽度,耐高温等优良特性以及AlGaN/GaN结构在界面处可以生成二维电子气导电沟道的特点,让基于GaN材料的高迁移率晶体管(HFET)在当今半导体功率器件领域备受关注。但目前市面上比较成熟的GaN基HFET器件多数是N沟道器件,P沟道器件因为GaN中采用Mg作为空穴受主杂质,其活性难以被激活,导致二维空穴气迁移率低,导通电流密度小。这最终造成P沟道GaN器件延迟远大于同等条件下的N沟道GaN器件,这严重拖慢了GaN基电路的速度。关于P沟道GaN器件的研究特别重要,本文在原有N型GaN器件基础上,对原有结构进行改进,成功研究出了具有P沟道特性,但是依靠电子气导电的GaN HFET,解决了上述P沟道GaN器件存在的诸多问题,并通过Sentaurus TCAD进行了相应的器件仿真,且该器件的工艺能够很好的与现有工艺集成。本文的主要工作内容有:通过Sentaurus TCAD对常规N沟道增强型GaN器件进行建模仿真,并探究了AlGaN厚度和Al组分对器件部分电学特性的影响,发现AlGaN厚度和Al组分的增加会让器件二维电子气浓度上升,器件源漏电流提高,但会让载流子迁移率降低。对仿真结果进行分析,发现势垒厚度和Al组分的增加增强了AlGaN层的极化强度,使界面处电子气浓度水平上升,但电子气浓度水平的上升使沟道处载流子电离散射的概率变大,所以沟道内的载流子迁移率下降。我们基于传统的N沟道GaN HFET,成功研制出具有P沟道特性的基于电子导电的HFET器件。该结构阈值电压为1.5V,饱和输出电流高达60mA/mm,关断时漏电流仅为3.459×10-15A/mm。具体原理为器件利用背栅结构,通过给背栅加正压,吸引二维电子气与背栅附近高浓度空穴复合,来关断导电沟道。我们对新型P型GaN HFET输出曲线进行分析,发现漏极电压升高会严重降低源漏饱和电流。通过对器件沟道处电荷分布进行分析,发现造成源漏饱和电流降低的原因是因为漏极电压让器件中的寄生PN结势垒变宽,阻挡了二维电子气沟道。根据这一结论优化改进原有结构,将顶栅极向漏极延长形成场板结构,削弱了漏极电压的影响。将器件的饱和输出电流从60mA/mm提高到了170mA/mm,阈值电压为-2.8V。
其他文献
表面贴装(SMT)是将电子元器件通过回流焊或波峰焊等方法焊接在制作好的印制电路板(printed circuit board,PCB)表面的技术,Sn-Pb合金曾因其诸多优点而被作为可焊层广泛应用于SMT领域之内,然而由于金属Pb具有毒性,严重威胁了人体健康与环境安全,RoHS指令与WEEE指令严格限制了金属Pb的使用,因此需要寻找一种Sn-Pb合金的替代品。SnAgCu三元合金熔化温度低,与无铅
三维集成封装在电子封装领域中所占的地位越来越重要。在三维集成封装的工艺步骤中,键合技术为关键工艺之一。如何将基板之间在较低的温度下进行相互连接、保持牢固的键合并根据需求实现键合层的绝缘或者导通已成为三维集成中的关键问题之一。金锡合金作为一种常用的引线键合材料已被广泛应用于电子封装中,其具有键合温度低,键合强度大,气密性好的封装特点;而在绝缘介质键合中主要以有机聚合物为代表,苯并环丁烯(BCB)作为
原子核高自旋态研究是核物理研究的一个重要的前沿领域,它为人们认识和理解核结构、核形状、核子耦合等特性提供了非常有价值的信息。本论文内容为研究137La、138Pr和98Sr的高自旋态结构特性。对137La和138Pr高自旋态的实验研究是在中国原子能科学研究院的HI-13串列加速器上进行的,分别通过重离子融合-蒸发反应130Te(11B,4n)与128Te(14N,4n)来布居137La与138Pr
近年来拓扑半金属在凝聚态物理领域引起了研究者的极大兴趣。一系列的拓扑半金属得到了理论预测和实验验证,如狄拉克半金属、外尔半金属和节线半金属。它们在费米面附近都具有典型锥形色散的能带,如Cd3As2、Na3Bi、Ta As,属于所谓的第一类拓扑半金属。此外,还存在另一种类型的量子材料,被称为第二类拓扑半金属。第二类拓扑半金属的典型特征是材料内的洛伦兹不变性被破坏,导致锥形色散发生强烈倾斜。第二类拓扑
由于网格依赖性,有限元法在计算一些大变形和移动边界问题中遇到了许多困难。一些发展比较成熟的伽辽金型无网格法可以很好地避免这些困难,然而它们需要使用背景网格进行积分,对于大规模问题计算效率较低。本文采用的无网格局部彼得洛夫-伽辽金法(MLPG)具有完全不需要网格、计算速度快和精度高等优点。本文在这种方法的框架内提出了计算非线性材料大变形问题的计算方案,并得到了算例验证,主要工作如下:1.对MLPG法
高斯和是数论中一个基本而重要的研究对象和基本工具。而高斯和明显表达式的计算是一个重要却又十分困难的问题,不仅在数论和算术几何中具有理论价值,而且在计算机科学、信息科学、组合学与试验设计等方面有实际的应用。从高斯本人开始,就有许多数学工作者致力于决定高斯和值的研究。可是,能够明显决定高斯和的情形很少。目前,学术界有两个研究方向:一是当高斯和的次数较小时,利用低次数域相对简单的算术性质,决定高斯和的明
螺旋线行波管因其频带宽、输出功率大,在电子对抗、卫星通讯等领域有着十分广阔的应用前景。随着工艺水平的提升,螺旋线行波管的工作频率提升到了V波段,V波段空间行波管在通讯中发挥着重要作用,因而研究V波段螺旋线行波管具备非常重要的意义。本文围绕V波段(52GHz~62GHz)螺旋线行波管开展研究,完成了互作用电路和电子光学系统的设计。V波段螺旋线行波管高频结构的研究。首先,研究了不同结构尺寸对高频特性的
电子技术的急速发展,不仅为人们的生活提供了方便,也引起了诸多的电磁污染。而开发高效的微波吸收材料是解决此类电磁污染问题的有效途径。然而,吸波材料在酸性、碱性、盐雾等复杂应用环境下,会出现腐蚀、老化等问题,从而降低其吸波性能。因此,发展集高效吸波和防腐性能于一体的复合材料是当前研究重点之一。本文以片状FeSiAl磁性合金为基体,针对其介电常数过高,阻抗匹配较差的特点,通过合理设计和优化制备工艺,以期
现在高速发展的世界,新能源的寻找任务十分紧迫,聚变热核反应作为一种可以产生高额能量产出的物理反应,是一种不产生核废料的清洁反应,成为一种理想的能量来源。氢及其同位素是聚变反应中的关键物质。与常规化石能源不同,氢作为一种二次能源,需要通过能量的转化从其他能源中制取。作为一种能源,氢具有很多优秀的特点。而在聚变热核反应中,碳材料是一种常见的面向等离子体材料(Plasma Facing Material
本论文采用紧束缚格林函数方法,系统的研究了碳纳米管中的缺陷及其对碳纳米管电子性质的影响。在分析了拓扑缺陷态空间分布特性的基础上,我们研究了缺陷之间的相互作用,发现缺陷之间有效相互作用的距离远大于缺陷态在空间的分布尺度,即缺陷之间存在长程相互作用。经过分析,发现能隙中的缺陷态可以通过低能势垒隧穿跃迁到体系的延展态上去,从而导致这种长程相互作用。这样的物理机制得到了我们构建的一维单原子链模型的验证。我