【摘 要】
:
目前,随着“大数据”、“人工智能”等热门前沿技术的迅猛发展,建筑能源领域也逐渐展开了智能控制方向的相关研究。一个完备的智能化建筑能源监测系统具备了众多监测物理量的传感器和庞大且复杂的传输网络以及数据管理平台。每一个正常工作的传感器都肩负着采集、传递和储存大量数据的重要任务,而稳定的网络环境也在控制系统中担任着至关重要的角色。但是由于传感器存在电源和存储容量较小的局限性,且易受到诸如强电磁环境等外界
【基金项目】
:
“十三五”国家重点研发计划,所属项目为基于全过程的大数据绿色建筑管理技术研究与示范,课题名称为建筑运行大数据安全与数据质量保障关键技术(2017YFC0704203);
论文部分内容阅读
目前,随着“大数据”、“人工智能”等热门前沿技术的迅猛发展,建筑能源领域也逐渐展开了智能控制方向的相关研究。一个完备的智能化建筑能源监测系统具备了众多监测物理量的传感器和庞大且复杂的传输网络以及数据管理平台。每一个正常工作的传感器都肩负着采集、传递和储存大量数据的重要任务,而稳定的网络环境也在控制系统中担任着至关重要的角色。但是由于传感器存在电源和存储容量较小的局限性,且易受到诸如强电磁环境等外界因素的干扰,以及在系统运行过程中通讯网络的波动和一些人为的错误操作,都有可能会导致监测数据随机地、不可预测地出现缺失现象。完整的实时数据库是保障建筑能源监测系统安稳运行的基础,每一时刻运行工况的调节都取决于前一时刻的数据反馈情况,一旦某时刻数据缺失使系统处于无应答状态,会影响建筑能源监测系统反馈调控、系统的安全运行和数据库的应用分析价值,导致不必要的能源浪费、环境舒适度降低以及设备性能损耗等。因此,建筑能源监测系统中缺失数据的重构和修补问题的研究在建筑能源智能控制领域愈发重要。本研究以建筑能源监测系统中的一次回风再加热系统和冷冻站系统为例,将系统中所有传感器监测数据为研究对象,经过对数据特性和缺失特性的研究分析后针对不同数据缺失工况设计相应的重构方法进行数据修补。同时考虑系统实际运行过程中传感器故障、监测数据漂移的情况,提出了校准与重构并行的研究思路,以避免多次使用历史数据产生的误差累加,确保数据重构的精准度;依据建筑能源监测系统具有个物理变量间的高度耦合性的特质建立解析模型,以避免直接利用监测历史数据拟合生成数学模型的方法对数据的高度依赖性。且由于模型中所有变量之间紧密联系,相互制约提高了预估数据的可靠性和准确性。填补数据方法的本质就是重构出与缺失数据点真实值最为接近的估计值对空白处进行填补。本研究采用贝叶斯推理,通过合理建立似然函数中的距离函数实现数据重构,并引入少量的历史数组减少对历史数据的依赖。本研究依据监测仪表的精度来设定贝叶斯推理中的先验分布,同时为了满足模型中多个自变量和未知变量,引用最大期望方法(Expectation-Maximization Algorithm,EM)和极大似然(Maximum Likelihood Estimation,MLE)方法逆向推演正态分布参数增加引入数据量,以解决模拟出的各种数据缺失类型进行数据填补和修复。本研究针对多种情况均能够保证预估值的准确性,且填补效率高、填补维度大,同时实现了历史数据的准确性和数据库的完整性,这对完善智能化的建筑能源监测系统具有十分重要的意义。
其他文献
集中供热是我国重要的民生基础建设,在解决了我国冬季取暖问题的同时,集中供热所耗费的大量能源不容忽视。近年来科学家们提出了一种新型的动力分布式集中供热系统,其核心为在每个用户安装变频水泵,以此替代传统供热系统中的调节阀,通过独立的水泵向用户提供压头,这样避免了压头浪费,能够显著节约集中供热系统的输配能耗。动力分布式集中供热系统的关键是运维部分,由于供热管网水各支路水力互相影响,如何统筹协调动力分布式
当前随着我国经济的快速发展,能源消耗量日益增多,建筑能耗占总能耗较大比例,可再生能源具有清洁环保无污染的优势,代替传统能源为建筑供能是实现“碳中和”的有效途径之一,其中太阳能资源作为一种广泛分布的可再生能源,尤其在太阳能资源丰富程度三类以上的北方地区应用较广。另一方面,“近零能耗建筑”近年来在我国得到了大力推广,相关技术日益成熟,该类建筑由于其围护结构具有高保温隔热性能和高气密性能,采用新风热回收
辐射供暖末端以其低能耗高热舒适性的优点得到了越来越多的应用,但是辐射供冷末端因其存在结露风险而限制了供冷能力,基于此开发的列管式自然换热空调末端设备克服了结露风险且可承担房间湿负荷,可以满足建筑全年的供热供冷和除湿要求,特别适用于近零能耗建筑等低空调负荷建筑。但是在使用数值模拟计算方法进行此设备的性能提升研究时发现,还缺乏其在夏季湿工况下的除湿能力的模拟计算模型,在随后的文献调研中发现,现有的凝结
在国家提出碳达峰和碳中和的时代背景下,发展太阳能开发利用技术意义重大;太阳能PVT热泵系统可以综合利用太阳能、空气热能和天空冷辐射热能,是近几年新兴的一种集热电冷和生活热水一体化的太阳能开发利用系统。我国幅员辽阔,各个气候区的气象条件和建筑冷热负荷差异较大,太阳能PVT组件及热泵系统受室外气象条件变化影响也较大,因此,为了在不同地区推广使用PVT热泵技术,就需要科学、合理的室外设计气象参数来服务于
随着城市化进程的持续加快和人口的迅速增长,为满足当今社会生活与工作的需要,城市建筑的规模与密集程度不断增加,建筑火灾的发生难以避免,给国家和社会带来了不可估量的财产损失,甚至造成严重的人员伤亡。对建筑火灾财产损失和人员伤亡的准确预测将有利于救灾的组织和灾后恢复,因此,建筑火灾的财产损失和人员伤亡预测一直为火灾研究中亟待解决的两大重要问题。机器学习在大数据时代是必不可少的核心技术,近年来,一些研究将
颗粒材料如砾石、砂土等常见于实际岩土工程中,海洋工程中岛礁填筑以及近海砂床上平台建设也常涉及到钙质砂等颗粒材料。颗粒材料常由于渗流引发土体破坏和变形问题,例如支护结构间的土体渗流变形和砂床上吸力锚负压贯入的土塞产生。颗粒与流体间的耦合作用极为复杂,而基于离散元的流固耦合数值模拟方法(CFD-DEM)能有效反应颗粒与流体间的相互作用,并从细观角度研究颗粒材料渗流问题。然而当前用于表征流体对颗粒作用的
深部隧道钻爆开挖时,爆破荷载使目标岩体有效破碎的同时,也将引起隧道局部围岩产生不同程度的损伤,严重影响隧道稳定性。爆破作用的本质是爆破荷载对岩体做功,因此,进行爆破荷载作用下岩体能量演化及失稳破裂研究,有利于高效利用爆破能量和降低爆破负面影响。本文采用显式动力学软件,分析了单孔爆破体系中各物质能量的时空分布特征和演化规律,并研究了隧道围岩在高地应力和爆破荷载耦合作用下,侧压力系数与初始裂纹倾角对围
全流动贯入仪自提出以来被广泛用于测试软土强度,但其在测试浅表层土体强度时由于土体并未在探头周围全流动,导致阻力系数取值准确性降低进而影响测试结果,基于此,本文提出了一种可测探头不同位置处土体压力的球形探头全流动贯入仪,通过在球形探头的不同位置安装微型土压传感器,进行不同土体强度下的室内模型试验,探究探头不同位置土压与贯入深度、阻力系数N和土体强度的关系。并利用基于计算流体力学方法(CFD)的ANS
当今社会,我国大力倡导节能减排,建筑节能设计已成为建筑设计的重要组成部分。在进行建筑节能设计时,设计参数的确定离不开合理、可靠的基础参数的支持。在室内环境方面,国外发达国家已建立了热舒适基础数据库,并由此形成了标准体系,但我国仍缺乏行业内公认的数据库。热舒适基础数据的质量将直接影响数据挖掘分析的结果,对热舒适数据进行质量控制具有重要意义。目前对热舒适数据质量控制方法的研究有待完善,有关数据特征对数
天然岩体中包含不同类型的不连续性结构,例如裂隙、节理、层理、断层和剪切带等。这些不连续结构面在外荷载的作用下极易发生裂纹的萌生、扩展、贯通以及滑移等,显著影响岩体的物理力学特性,而岩体的失稳破坏又与裂纹的萌生、扩展及贯通密切相关。因此,研究裂纹扩展的机理及特性对于含裂隙岩质边坡、深埋巷道及隧道等岩石工程的失稳破坏具有重要的工程意义。首先,运用传统断裂力学理论和基于局部化强度理论而提出的断裂模拟方法