系列工程机械用钢组织性能及磨损行为研究

来源 :东北大学 | 被引量 : 0次 | 上传用户:vay_b
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
近些年,低合金耐磨钢得到了快速发展,我国已基本具有生产全系列级别低合金耐磨钢的能力,但仍可对耐磨钢的成分和生产工艺进行优化,提升低合金耐磨钢的性能,扩大其应用领域,逐渐取代传统耐磨材料和部分高强结构用钢。目前,国内生产低合金耐磨钢采用调质工艺,这种工艺能源损耗大、成本高且生产周期长。本文对比研究在线工艺和离线工艺NM400的组织、力学性能及磨损性能,为在线生产NM400提供理论基础。对比研究系列高强钢和系列耐磨钢磨损性能和磨损机理,为某些工况下低合金耐磨钢代替高强结构钢提供数据参考。主要研究结果如下:(1)在线和离线两种工艺下的NM400维氏硬度均达到了 430HV以上,在线工艺生产的NM400的晶粒为压扁状,晶粒内马氏体板条束内的板条长且细小、大致呈平行排列,部分原奥氏体晶粒内部包含2~3个不同取向的马氏体束,在马氏体板条间分布着大量细小棒状碳化物。在线工艺实验钢的抗拉强度比离线工艺高出近100MPa;四分之一冲击试样,在线工艺的冲击功平均高出2J。(2)以Q345为对比标准,两种工艺实验钢均表现出优异的磨损性能,但是在线工艺实验钢搅拌磨损条件下的耐磨性明显高于离线工艺,约为其1.189倍。此工况下,两者的磨损机制均为梨沟切削为主伴随着疲劳剥落。(3)不同微观组织的磨损行为研究发现,相对耐磨性与硬度关系曲线以组织为界限以三种不同的斜率呈现上升趋势,在硬度150HV~200HV时,其基体组织为珠光体/铁素体组织,相对耐磨性上升斜率最平缓,在硬度值超过200HV左右,基体组织变为铁素体/粒状贝氏体,实验钢的相对耐磨性的上升斜率增大,当曲线进入马氏体组织区域时,相对耐磨性随硬度上升斜率最大,并且得出,基体组织与相对耐磨性的变化规律斜率为:马氏体>贝氏体>珠光体/铁素体。(4)硬度对材料磨损性能的影响研究表明,在硬度400HV左右时,马氏体耐磨钢磨损行为以梨沟切削显著,塑变疲劳表现为减少趋势。硬度达到450以上时,磨损表面发生塑性变形的材料明显变少,而浅梨沟痕迹占据整个磨损表面。从相对耐磨性与硬度的关系曲线中发现,耐磨钢马氏体组织是以一定斜率上升,这也验证了第四章中的马氏体组织硬度与相对耐磨性的上升变化规律,并且在与高强钢对比时也发现,相同硬度条件下的,不同化学成分的马氏体组织所表现的变化趋势也存在一定的差异。
其他文献
锂硫电池在理论上具有高能量密度和低成本的优势,是目前最具研究价值及应用前景的新一代电化学储能体系之一。然而单质硫的低电导率,充放电过程中的大幅度体积变化,中间产物溶解扩散造成的“穿梭效应”等问题,严重制约了锂硫电池的应用前景。氮化钒(Vanadium Nitride,VN)具有优异的导电性,用作载硫基底材料能够显著改善电极的导电性,并能有效抑制多硫化锂的穿梭。在本论文的研究中,将过渡金属掺杂至VN
目前,在跨单元调度中,普遍采用运输策略来决定车辆行驶路径,然而这些运输策略限制了车辆一次只能运输一个异常件或者车辆只能运输其所属单元内的异常件,造成车辆利用率不高,车辆在单元间的运输次数增加,导致总成本增加。为了提高车辆利用率,并在保证生产效率的同时,有效降低总成本,本文拟在具有不同车辆数量的单元制造系统中,对跨单元调度优化的同时,对车辆路径也进行优化,允许车辆一次运输多个异常件,且车辆由各单元共
超级电容器作为一种新型储能设备一直备受人们关注。目前广泛使用的有机系超级电容器虽然拥有高达2 V以上的电位窗口,但是因为有机电解液易燃易挥发等缺点导致有机系超级电容在实际应用中存在很多限制。水系超级电容器安全又廉价,且电解液的离子电导率高,功率密度大,具有广阔的应用空间。但是水的热力学分解电势只有1.23 V,导致水系超级电容器的工作电压低,常在1.0 V左右。因此如何提高水系超级电容器的工作电压
平行铸造车间主计划排产是集团式多车间铸造企业在模糊生产环境下,完成生产工艺相同而生产效益不同的平行铸造车间最优订单排产决策的过程。现有人工主计划排产方式排产效率低下,排产结果缺乏科学性与合理性,容易造成订单拖期严重、企业生产效率低下、车间生产负载不均衡等问题。为此,本文研究了基于改进多目标粒子群算法的平行铸造车间主计划排产建模及求解方法,并通过多个规模的仿真实验验证了所提出的多目标优化算法辅助排产
随着经济、可持续的新能源取代传统化石燃料的需求日益增长,锂资源的消耗不断增加,开发可替代锂离子电池(LIBs)的电化学储能技术引起了人们的广泛关注。其中,与锂离子电池具有相似存储机制的钠离子电池(SIBs),由于具有丰富的资源储量和低廉的成本,被认为是最有希望的下一代电化学储能技术。电极材料作为电池的关键部分很大程度上决定了电池的性能。因此,设计和构建合适的、稳定的、高性能的电极材料对推动钠离子电
汽车板簧是汽车悬架系统中最传统的弹性元件,由于它具有经济性、生产工艺简单、可靠性和结构优化空间大等优点,而被广泛应用于交通运输工具中。随着汽车工业的高速发展,对高强度汽车板簧钢的需求量也逐年增加。本文以一种新型高强度汽车板簧钢为研究对象,旨在通过对其加工工艺和组织性能等方面开展研究,为工业试生产工艺的制定提供理论指导。本文主要内容及结果如下:(1)对弹簧钢的连续冷却转变规律和淬透性进行了研究。利用
三维自支撑材料由于其导电传质能力强,机械柔性佳以及制备工艺简单等优点被广泛地应用于储能与转换器件(如锂离子电池和锌空气电池等)。但是该材料在高电流密度下容易产生结构性转变,从而造成能量密度与功率密度大幅度下降等问题。因此,开发在高电流密度下也能保持结构稳定的三维自支撑电极是一项挑战。本文设计了一种新颖的多层同轴纳米管阵列结构,改善了三维自支撑电极在高电流密度下的储能特性和循环稳定性。此外,通过调控
新能源轨道交通(轻轨、地铁等)采用电力驱动系统,无尾气排放、绿色环保、高效节能,广受大众青睐。相比传统旋转电机,游标永磁直线电机推力密度大、无机械传动机构即可实现直线运动,故损耗低、电能转换效率高、响应及运行速度快,在新能源轨道交通牵引中有着巨大发展潜力。然而,由于缺少中间传动机构,干扰将直接作用于电机,使得控制系统对电机内部结构参数变化、负载扰动以及推力波动等更加敏感,影响其控制精度和稳定性。为
磁流变液(magnetorheological fluid)是一种对磁性敏感的智能材料。自1948年Rabinow在磁力离合器中率先引入磁流变液,历经70多年,磁流变液从开始的理论研究发展到了现如今的工程应用。由于在工程领域拥有很好的前景,依赖于场效应的阻尼器迫切需要对阻尼力进行半主动的控制,而其阻尼力却非常容易受到摩擦和温度的影响。就国内外研究现状,磁流变阻尼器的研究主要集中在磁场仿真、磁路设计
随着社会的高速发展,水污染受到破坏日趋严重。在这样的大环境下,空调实验车(工程上称为地下水采样检测实验室)的出现为多领域提供了水质检测试验的适宜工作环境。本文考虑夏季空调制冷状态下,以WX1183型室舱为研究对象,使用有限体积法和k-ε标准湍流模型,分析研究室舱内的三维流场分布特征。首先介绍了空调实验车的市场应用背景、室舱内流场相关的国内外研究现状、空调实验车的构成和室舱的空调运行原理;其次应用S