论文部分内容阅读
光是最重要的环境信号之一,它不仅是高等植物光合作用的能量来源,同时也是生长发育的信号来源。植物中存在的隐花色素(cryptochrome,CRY)可以接收太阳光谱中的蓝光信号,并通过其信号传递途径调控植物的生长发育。隐花色素的N端(CryPtochrome N-Terminal domain,CNT)与光裂解酶(photolyase)有很高的同源性,但是C端(Cryptochrome C-Terminal domain,CCT)非常独特。过量表达融合蛋白GUS-CCT的转基因植物呈现出组成性光形态建成(COnstitutivePhotomorphogenesis,COP)的表型,证明隐花色素的功能区在C端。人们根据已有的实验结果推断,CNT的功能可能是通过依赖于蓝光的分子内作用抑制CCT的功能。我们在工作中发现,野生型植株中过量表达CRY1的N端功能区(CNT1)具有负显性效应,说明CNT对CCT功能的调控可能是通过分子间的相互作用来完成的。基于这些推断,我们进行了一系列生化实验,证明CRY1分子可以通过CNT1组成性地形成二聚体,并且CNT1上一些重要位点的突变会因为影响二聚化而使CCT1失去活性。通过类似的实验,我们也证明了GUS蛋白在体内是以多聚体的形式存在,其聚合能力对GUS-CCT所导致的COP表型是必需的。根据以上实验结果我们推测:在黑暗条件下,CMT1二聚体使得CCT的功能失活,没有信号传递;而在蓝光条件下,CNT1的结构可能发生了某种改变,CCT1被激活,从而将信号向下传递。对于GUS-CCT融合蛋白,其多聚体结构并不因为光照与否而变化,所以CCT始终处于被激活的状态,因而转基因植株表现COP表型。这些结果使人们对拟南芥菜蓝光信号传递机理有了更加深入的了解;在今后对其它物种的CRY结构与功能的研究中,这些结果也能提供有益的参考。