论文部分内容阅读
有机薄膜电容器具有极高的功率密度,在脉冲电源系统、高压输电网络等领域有着无可替代的地位。目前有机薄膜电容器的储能密度偏低,导致装备体积过大,严重制约了其应用。有机薄膜电容器性能由聚合物材料所决定,因此开发一种兼具高储能密度和高充放电效率的聚合物介电复合材料至关重要。本文探讨了近线性聚合物基复合材料的材料组成与结构参数对储能特性的影响,得到以下结果:1.基于体复合方式分别研究了以高介电铁电材料为基体的聚脲/聚偏氟乙烯-三氟氯乙烯(PUA/P(VDF-CTFE))和以高充放电效率线性材料为基体的聚偏氟乙烯-三氟乙烯-氟氯乙烯/聚脲(P(VDF-Tr FE-CFE)/PUA)复合薄膜。研究发现,在较低复合比例下采用体复合方式均能显著提升复合薄膜的储能特性,但高比例下将发生相分离导致耐压性能降低。在PUA/P(VDF-CTFE)中,10 vol.%PUA的复合薄膜击穿场强高达5020 k V/cm,是纯P(VDF-CTFE)的1.35倍;同时,2500 k V/cm电场下充放电效率从10.6%显著提高至46.1%。在P(VDF-Tr FE-CFE)/PUA中,20 vol.%比例的薄膜储能密度达到4.49 J/cm~3,充放电效率为62%。2.为解决体复合发生相分离的局限性,研究了双层结构的PUA/P(VDF-CTFE)与P(VDF-Tr FE-CFE)/PUA复合薄膜。结果发现,对于介电常数差异较小的PUA/P(VDF-CTFE),厚度比例为1:1的复合薄膜击穿场强达6180 k V/cm,比纯P(VDF-CTFE)提高了35%,2000 k V/cm下双层薄膜充放电效率均高于75%。对于介电常数差异较大的P(VDF-Tr FE-CFE)/PUA,当厚度比例为1:1时,复合薄膜击穿场强略微下降,储能密度提升为4.78 J/cm~3,充放电效率为55%。3.为提高纳米材料分散性,将高绝缘PUA对钛酸钡(BT)纳米颗粒进行表面修饰,实验发现介电常数与击穿场强同时提升。随后,设计了一种具有介电梯度的三层渐变复合薄膜以缓解层间介电常数差异。结果表明,三层渐变薄膜的最大击穿场强可达5970 k V/cm,储能密度提高到8.2 J/cm~3,充放电效率为50%。4.提出一种中间为高极化强度BT纳米颗粒、两侧为高充放电效率线性材料聚甲基丙烯酸甲酯(PMMA)的三层夹层复合结构。采用体复合优化后的PMMA作为基体,研究了不同夹层厚度对储能特性的影响。结果表明,当BT夹层体积分数为14%时,复合薄膜击穿场强达到5340 k V/cm,储能密度提高至7.48 J/cm~3,充放电效率为77.2%,实现了高储能密度的近线性聚合物复合薄膜的制备。