氦原子在深紫外激光脉冲作用下的双光子双电离研究

来源 :中国科学院大学(中国科学院物理研究所) | 被引量 : 0次 | 上传用户:rogiangel
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
自然界中许多基本过程,例如化学反应、超导、巨磁阻等,都受到多电子动力学的控制。强激光脉冲与原子的相互作用会产生许多非线性现象,诸如多光子电离、高次谐波产生和多电子电离等。深入理解一些简单体系的多电子动力学过程,例如氦原子的双电离过程,有助于我们理解更加复杂体系的多电子动力学过程。本论文通过数值求解含时薛定谔方程研究了氦原子在深紫外激光脉冲作用下的双光子双电离过程,主要结果总结如下:第一,基于原子结构计算的B样条方法,我们开发了一套求解氦原子含时薛定谔方程的程序,该程序可用于研究深紫外激光脉冲作用下氦原子的单光子双电离和双光子双电离过程。第二,氦原子的双光子双电离过程存在一个动力学特征时间tc。当脉冲的持续时间大于特征时间tc时,两个电离电子的能量分布呈现双峰结构,反之呈现单峰结构。我们通过分析两电子波包随时间的演化过程,发现两个电离电子的能量分布呈现双峰的原因是在激光脉冲作用下两电子在原子核附近的振荡过程中,大部分基态两电子的库仑相互作用能被一个电子获得。因此,双峰结构不能作为序列电离的信号。两个电离电子的能量分布呈现单峰的原因是在激光脉冲结束之后大部分基态两电子的库仑相互作用能被两个电子平分。第三,当激光载脉冲的波频率大于氦原子的第二电离能时,双光子双电离过程的特征时间tc和基态两电子的库仑相互作用能(?)12满足特征关系tc(?)12 ≈ 4。根据量子速度极限的概念,特征时间tc可以理解为从氦原子的基态演化到两电子携带不同能量的双电离态所需的最短时间。第四,当改变原子核的电荷量、电子的电荷量、电子的质量,以及同时改变原子核和电子的电荷量时,双光子双电离动力学过程的特征时间tc和基态两电子的库仑相互作用能(?)12仍满足特征关系tc(?)12 ≈ 4。最后,当2S态作为双光子双电离过程的初态时,随着脉冲持续时间的增加,两个电离电子的能量分布呈现由单峰结构到双峰结构的转变。
其他文献
1937年,意大利物理学家埃托雷·马约拉纳(Ettore Majorana)预言了一种反粒子是自身的基本粒子,叫做马约拉纳费米子。固体宇宙中的马约拉纳费米子满足非阿贝尔统计规律,对于实现拓扑量子计算具有重要意义,因此引起了人们广泛关注。本文通过扫描隧道显微镜/扫描隧穿谱(scanning tunneling microscope/spectroscopy,STM/S)系统性的研究了铁基超导体FeT
单分子电子学是将单个分子连接在两个电极两端,一方面可以通过探测到的电信号来反馈得到分子结构的信息,以及分子在不同结构之间相互转换的信息;另一方面可以利用分子在不同结构之间的转化以达到单分子开关等功能化器件的目的。近年来,随着传统场效应晶体管尺寸越来越小,量子效应越来越显著,寻求新的器件结构和材料已经成为大家专注的焦点。单分子器件不仅在尺寸上更小,而且选择多样,有望实现多功能的单分子场效应晶体管。本
超导体中存在特殊的宏观量子现象如零电阻、完全抗磁(Meissner Effect)、约瑟夫森效应,可以在精密磁场探测、量子计算、超导强场磁体等领域进行应用。但是目前尚无超导体微观机理的统一理论描述。在已发现的超导体中,两个高温超导体系:铜基超导体和铁基超导体都是具有准二维结构的超导体系。本文介绍了具有准二维结构的铁基材料EuFeAs2的发现及对其电子掺杂相图的研究,同时还介绍了对具有准一维结构的新
多铁隧道结(multiferroic tunnel junctions,MFTJs)通常由两个磁性金属电极和中间的铁电绝缘材料构成。通过施加电压脉冲改变铁电势垒电极化状态,可以使MFTJs在低电阻态和高电阻态之间切换,这是隧穿电致电阻(TER)效应;通过改变两个铁磁电极的磁化排列方向,也可以使MFTJs在高低电阻态之间转变,这是隧穿磁电阻(TMR)效应。多铁性存储器是具有竞争力的下一代非易失存储器
在铁基超导家族中,二元FeSe的结构最简单,仅含有FeSe4四面体导电层(T>Tc)或超导层(T
高温超导作为凝聚态物理最核心的领域之一,它的魅力主要表现在两个方面。其一,顾名思义,它的超导转变温度Tc很高,这一点极大地打开了超导的潜在应用空间。其二,它的电子与电子之间存在着强关联,这一点将高温超导机理与如今凝聚态理论中最核心的领域——强关联物理,紧密地联系了起来。对于高温超导机理的研究,目前主要面临着两个问题。一是当前没有一个合适的描述强关联体系的微观理论。二是高温超导的物性非常复杂多样,同
上世纪八十年代量子霍尔效应的发现掀起了凝聚态物理研究的新热潮。寻找和研究新的量子态成为了凝聚态物理研究的重要方向。随着对整数以及分数量子霍尔效应的不断研究,研究者们最终通过引入数学上拓扑的概念对这个新的量子态进行了解释。随后,人们试图寻找在零场下具有量子霍尔效应特性的量子态。紧接着,通过理论计算、新材料制备以及各种测试手段证实存在这种类似于量子霍尔效应的新量子态,即拓扑绝缘体态。对拓扑绝缘体的研究
近年来纯自旋流的研究已经成为自旋电子学方向的研究重点,它在自旋传输过程中允许只有自旋的传递,没有电荷的输运,因而拥有热耗低、角动量转移效率高、无奥斯特场产生等优势。产生纯自旋流的方式很多,主要有:非局域自旋阀、自旋霍尔效应、自旋塞贝克效应、自旋泵浦效应等。根据其产生纯自旋流方式的不同,目前自旋电子学已进一步发展出一系列分支,包括:自旋-轨道电子学(spin orbitronics),自旋卡诺电子学
自量子霍尔效应被发现以来,拓扑电子态因其独特的性质受到了人们的广泛关注。人们已经在物理模型和材料实现方面对平衡拓扑电子态有了很深入的认识。然而,因研究方法的缺乏和系统的复杂性,非平衡拓扑物态的研究仍然停留于简单物理模型上。作为非平衡态之一,时间周期驱动体系呈现出了丰富的拓扑相,这使得真实材料系统的预测更加迫切,并预示着在其中发现新拓扑现象的可能性。本文致力于用第一性原理计算和物理模型分析相结合的方
极化激元学研究的是入射光光子与材料中各种粒子耦合形成的新的电磁场模式。对极化激元的研究本质上都是求解麦克斯韦方程组的过程,是计算自由电子响应、声子响应或其它响应引起的负的材料介电常数实部下的感应电磁场。极化激元是局域在材料界面传播的电磁场,可以突破传统的衍射极限,实现亚波长尺度上的电磁场操控,增强光与物质的相互作用,在信息、物理、化学、生物、能源等领域具有重要的研究意义和应用。本文中我们给出了纳米