基于神经网络的增量学习模型研究与实现

来源 :吉林大学 | 被引量 : 0次 | 上传用户:ahhaa
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着神经网络的广泛应用,其缺点愈发被发现。由于会产生“灾难性遗忘问题”而无法进行增量学习。近些年来,迁移学习的相关领域发展迅速。迁移学习方法大都注重模型在新任务上的效果,而在过去任务上的效果往往不注重。作为一种特殊的迁移学习方法,增量学习主要任务就是解决“灾难性遗忘问题”。本文将从另一个角度对灾难性遗忘进行解释:神经网络的训练对其数据的分布有很高的要求,如果训练数据不符合目标结果的分布情况,网络将会对一部分数据过拟合,从而产生训练失效。在增量学习任务中,后训练任务的数据不一定能满足先前任务训练数据的分布,所以会产生灾难性遗忘。基于以上所提出的另一种对灾难性遗忘的理解,在本文中提出了一种更快的补全后训练数据分布的方法RFD(Random Sample Distribution Fitting,RFD)用来克服增量学习方法在时间消耗较大并且适用条件较为苛刻的问题。该方法使用随机数值进入原训练网络,随机数值和其在原训练网络的结果作为新网络的输入输出和后训练数据一同更新后训练网络,使其大致具有与先前任务的一致分布。围绕该模型本文进行了以下工作:(1)通过概率分布的公式推导,在理论上证明该方法的合理性。(2)证明该方法对本文提出的两种场景下的灾难性遗忘有抑制的作用。(3)对模型的特性进行讨论,找到了合适的模型参数。(4)将本模型与其他基于神经网络的增量模型进行对比,证明了该模型相较于其他增量模型在时间和效果上的优势。在近些年网络架构搜索(Neural Architecture Search,NAS)开始被研究,而NAS的网络作为一种特殊的神经网络也有可能产生灾难性遗忘问题。并且结构和权值的同时变化会对迁移工作造成了很大的影响,已有的迁移方法构造复杂并且很难对其结果进行解释。猜想在本文提出的RFD方法应用到NAS中后同样能对其产生效果。为此本文重新定义了搜索的方式并在实验中证明其相关的特征,实验证明该方法可以使结构变得更加稳定,能够有效缓解NAS中增量学习权值与结构同时变化对增量学习带来的部分影响。并且在任务迁移中能够节省相应的迁移成本。
其他文献
多细胞生物依赖多种分化的细胞密切合作,共同完成复杂的生命活动。通过对单个细胞和细胞间的相互作用分析来揭示生物体内的活动,可以达到对细胞间差异的发现和对疾病进行精准治疗的目标。在对细胞中蕴含的信息进行研究时,会采用不同的技术进行研究与分析。随着单细胞研究投入的增加,单细胞相关技术大量涌现,积累了大量相关数据。然而,研究者们难以从海量的数据中获得有效的信息,提出快速高效的机器学习算法对单细胞相关技术的
人体姿态估计作为行为分析以及动作识别的重要技术,在计算机视觉中具有非常广阔的应用前景。近年来,虽然深度学习在一定程度上极大地促进了人体姿态估计相关工作的进步,但如何将人体模型更好的融合到卷积神经网络中,如何在保证高精度的同时提高网络的处理速度,如何对人体姿态的先验知识实现更充分的利用仍然具有特别重要的研究意义。因此本文以基于深度学习的姿态估计算法为主要研究内容,旨在设计出一种更高效,更准确的姿态估
在数字化正畸治疗过程中,对锥形束CT(Cone Beam Computed Tomography,简称CBCT)图像检测出单个牙齿的位置和牙号是帮助了解正畸治疗的有效手段,也是下一步进行单个牙齿分割的必要前提。近些年随着深度学习算法的蓬勃发展,基于卷积神经网络(CNN)的目标检测算法在医学图像领域的应用热度也逐渐高涨。但CBCT不同于自然图像,既包括CT和图片在自身维度和数据格式上的差别,例如:C
由于全球能源的短缺以及地球环境的不断恶化,近年来,汽车行业向新能源方向飞速转型发展。而燃料电池在工作的时候仅氢气与空气反应,产物仅为水,具有节能环保、安全高效等特点,且其相较其余新能源车型具有续驶里程长、燃料加注时间短等优点,必将成为今后新能源汽车的发展趋势。本文中,燃料电池汽车采用质子交换膜燃料电池(PEMFC)与锂电池组合的方式,PEMFC提供主要电能,锂电池组辅助提供电能,单独或协同工作,为
油田开采过程中涉及的项目种类比较多,因此需要应用大量的生产设备,同时还要涉及油田开采过程中需要的原材料、产品等,一些产品和原材料具有易燃易爆、有毒有害等特点,所以我们要高度的重视油田采油现场的安全管理工作。本文主要阐述了采油现场常见的危险源,对采油作业现场常见的安全隐患分析,根据实际情况制定采油作业现场的危险预防与控制措施。
在计算机视觉的基本任务中,目标检测毫无疑问是应用最广泛的算法。在完成目标识别任务的基础上,目标检测任务还要将不同类别的目标用不同颜色的矩形边界框表示出来。最近,基于深度学习的目标检测算法向人们展示了非常强大的能力。这些方法通常假定有大量标记的训练数据可用,并且训练和测试数据来自相同的分布。然而,这两个假设在实践中并不总是成立的。在现实中,训练集和测试集的数据往往存在很大的不同。这将会导致检测准确率
猪作为一种可以大规模养殖的动物,在动物养殖领域占有极其重要的地位。当今社会的飞速发展使得日常生活水平显著改善,猪肉供给量的增加导致猪只养殖基地不断扩充,然而如何有效安全的对养殖基地进行集约化管理成为当前所面临的首要问题。猪肉在我国肉制品消费的种类中占有很重要的地位,但是猪瘟疫情时有发生,为了保证食品安全,防止问题猪肉流入市场,对猪肉源头进行有效监管的需求日益迫切。除此之外,随着人们防范意识的不断增
随着移动互联网的快速发展,伴随着的是用户需求的快速增长,为解决用户海量的需求,开发者需要开发出大量的应用。理解已有程序代码是许多软件开发任务的基本步骤,如何才能快速地分析出代码所实现的功能,并尽可能地压缩程序开发和维护流程,已经成为软件工程领域的热点问题,具有十分重要的现实意义和经济意义。传统的程序分类任务只能依赖大量的人力进行人工标注,效率低下。有学者从自然语言处理领域借鉴经验,将深度学习引入到
随着汽车产业和经济的发展,机动车保有数逐年增长,交通安全更是成为制约汽车产业进一步发展的桎梏。主动避撞系统作为一种能提升行驶安全性的主动安全技术越发受到人们的关注。主动避撞系统包含了纵向主动避撞和横向主动避撞,虽然前者的技术更为成熟且在市场得到广泛推广,但当主车车速较高或前车与主车的相对距离难以满足纵向主动避撞的需求时,横向主动避撞却能实现更有效的避撞。故针对汽车纵横向主动避撞控制策略的研究对车辆
认知障碍是指人体认知功能的损害,根据功能损害的程度不同,可诊断为轻度认知障碍(Mild Cognitive Impairment,MCI)或重度痴呆(Dementia)。由于身体机能及大脑神经的衰退,认知障碍普遍存在于老年人。据科学统计,认知障碍难以治愈,每年影响约1000万人,因此有效、准确的诊断引起了广泛关注。近年来,结合先进设备的3D影像结果和临床认知障碍测试量表结果,医生可以分析得到准确的