论文部分内容阅读
随着互联网络以及广播技术的发展,人们有机会接触到大量的多媒体内容。但是随着数据量的快速增长,如何自动的对这些内容进行管理就成为了一个突出的问题。特别对于身边种类繁多的音乐信号,人们要求有快速高效的方法对它们进行分类管理(根据不同风格或演唱者等),本论文就是希望找到一种较好的算法来解决这个问题。本文在现有音乐分类系统的基础上,提出了一种改进的音乐分类结构,在原来的结构中加入了线性判别分析(LDA)降维模块对所提取的高维特征向量进行降维,并在最终的分类阶段使用支持向量机(SVM)分类器,并使用Matlab软件对最终的分类结果进行了仿真。目前大部分的音频音乐分类算法都包含了两个阶段:特征提取阶段和分类阶段。许多音乐特征可用于实现这一算法,包括时域的短时能量、短时过零率等,频域的带宽、谱质心等,还有基于听觉感受的MFCC(Mel-frequency cepstral coefficients)系数等。而分类算法可利用模式识别和模式分类中的大量现存的高效算法,例如GMM(高斯混合模型)[29]、NN(神经网络)、HMM(隐马尔可夫模型)等等。面对如此多的特征和分类算法,如何组合它们来得到较好的分类精确率,是否有可能对某些特征进行预处理来提高分类精确率,或是根据音乐分类的特殊性对分类器进行优化来取得高精确率。为了解决这个问题,本文在大量现存的音乐分类算法的基础上,提出了一种新的音乐分类结构。现存的音乐分类方法都将特征提取和分类这两个阶段孤立开来,提取的特征直接交由分类器进行分类,没有考虑到当前提取的音乐特征并不是最有利于分类的特征(特征向量代表的特征点在高维空间中的可分度并不是最高的),有可能通过一定的线性或非线性变换得到可分度更高的音乐特征。本文设计了一种新的音乐分类方法,该方法充分考虑了信号特征的可分类特性。在音乐特征提取阶