论文部分内容阅读
近年来随着智能控制理论、微处理器技术、电力电子器件以及电机调速控制理论的不断发展,感应电机调速系统正朝着高性能和智能化的方向发展。其中感应电机无速度传感器直接转矩控带(?)(Direct Torque Control,简称DTC)调速系统已发展成为目前感应电机调速系统中最有发展前途的高性能调速系统。DTC是继矢量控制出现以后发展起来的电机高性能调速控制方式,它以其新颖的控制思想、系统结构简单、转矩控制直接、速度观测能有效提高系统的冗余、鲁棒性强、动态性能好等优良性能受到人们的广泛重视,己成为感应电机调速领域的研究热点。但目前感应电机无速度传感器DTC系统中仍有一些关键技术,如电机低速时电机定子磁链辨识困难和转矩脉动增大以及运行中电机参数受环境变化影响电机调速性能等问题有待解决。为此,本文以感应电机无速度传感器DTC系统中定子磁链、定子电阻、电机速度等重要参数的辨识方法和磁链与转矩的控制策略展开理论与实践研究。在DTC辨识定子磁链参数的研究方面,为了克服传统DTC系统积分累积误差问题,本文在对传统的基于低通滤波器的定子磁链开环辨识方法进行原理分析的基础上,研究了基于均值补偿的定子磁链开环辨识方法,研究结果证明该方法能有效地消去积分器直流偏置的积分累积误差。但开环辨识器不具有消去误差的自适应能力,为此,本文通过将均值补偿算法引入定子磁链参数闭环辨识器,提出了一种新型基于PI校正的定子磁链闭环辨识器。仿真与实验研究表明,这种定子磁链闭环辨识方法,不仅保留了均值补偿算法有效解决积分器的累积误差问题的优点,而且该定子磁链闭环辨识器对不确定干扰有一定的校正能力,改善了定子磁链参数辨识精度。在DTC辨识定子电阻参数的研究方面,由于定子磁链、速度和转矩等主要参数的辨识,依赖于控制对象电机模型的定子电阻参数,而DTC系统的定子电阻受环境温度等因素影响发生变化时,使得感应电机DTC控制性能会随之下降,尤其低速时更为明显。为了解决DTC系统定子电阻参数变化影响电机控制性能等问题,本文采用模糊逻辑理论研究了定子电阻变化与定子电流误差之间的关系,并提出了一种基于定子电流误差的模糊逻辑定子电阻参数辨识器。研究结果表明:这种新型定子电阻参数辨识器不仅具有算法简单、实时性好、鲁棒性强等优点,还有效地改善了电机定子磁链和速度等参数的辨识精度和提高了DTC系统的速度和转矩的动静态控制性能。感应电机无速度传感器DTC调速系统已成为高性能调速领域的热点研究课题。但速度观测存在算法复杂、低速精度受定子电阻变化影响严重等问题。近年来,在实现高性能感应电机无速度传感器DTC系统运行的研究中,人们广泛运用MRAS理论解决具有时变非线性特性的电机控制问题。在DTC速度参数观测的研究方面,本文在分析多种速度观测方法的基础上,运用MRAS理论提出了一种DTC交互式MRAS速度观测器。这种交互式MRAS速度观测方法,通过采用电机电压模型作为参考模型和电机电流模型作为可调模型构建了MRAS速度观测器,并将参考模型和可调模型进行实时互换的方法,在实现速度观测的同时在线辨识了定子电阻参数。仿真和实验结果表明:这种运用稳定性理论的交互式MRAS速度观测新方法,由于消去了定子电阻变化的影响,获得了稳定的、高性能的速度观测,改善了感应电机DTC系统低速时的动静态调速性能。传统的感应电机DTC系统采用磁链与转矩滞环式控制,在3600空间中仅用六个基本的电压空间矢量对电机磁链与转矩直接控制,因而存在固有转矩、磁链、电流脉动大和开关频率不固定等问题。针对传统控制方法存在开关频率不固定等问题,本文研究了细分的十二电压空间矢量的DTC-SVM控制方案。该方案将六个基本电压空间矢量增加到十二个并在SVM中合成任意大小和方向的控制电压矢量,使得DTC系统对定子磁链与转矩的控制更精细,有效地降低低速时的转矩脉动。为了进一步改善DTC系统磁链与转矩控制特性,本文将模糊PI自校正控制算法引入到磁链与转矩的调节控制环节。这种模糊PI自校正调节器,将磁链与转矩的误差和误差变化率作为模糊逻辑控制器的输入,由模糊逻辑规则实时在线调整PI调节器的控制参数,从而获得优良的磁链与转矩控制性能。仿真与实验研究表明:这种基于磁链与转矩模糊PI自校正控制的DTC-SVM控制方案,不仅提高了系统的鲁棒性和不同控制对象的适应性,而且保证了DTC系统具有良好的磁链与转矩跟踪控制动态品质,并使转矩脉动与电磁噪声得到了较好抑制。在Matlab7.8/Simulink仿真编程环境下,本文建立了传统的感应电机DTC系统仿真模型和改进的感应电机无速度传感器DTC系统仿真模型,并对这两种仿真模型进行了仿真研究。仿真研究结果验证了本文所提出的DTC参数辨识方法和磁链与转矩控制方法的正确性。通过采用美国Microchip公司的数字信号处理器dsPIC30F6010A和日本三菱公司的IPM智能功率模块PM50CLA120构建了感应电机无速度传感器DTC系统,并在搭建的实验平台上进行了实验研究。在软件设计方面,本文采用C语言和汇编语言混合编程的方法,成功地完成了DSP控制软件的研制工作,实现了对感应电机的高性能控制。大量的实验研究结果证明了本文所提出的感应电机无速度传感器DTC参数辨识方法和基于磁链与转矩模糊PI自校正控制方法的有效性和正确性。