MMC的子模块IGBT开路故障诊断方法研究

来源 :北京化工大学 | 被引量 : 1次 | 上传用户:wenzhiqiang963
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着社会经济的快速发展,人类对电的需求逐步扩大,但传统的风力光伏发电技术受到运输距离远、规模极大的限制,使得电力在传输过程中的成本极为昂贵,且电力系统并网点电压极为不稳定。模块化多电平换流器(Modular Multilevel Converter,MMC)具有开关损耗较小及输出电压谐波畸变风险小等显著优点,在新能源发电中使用极为宽泛。但MMC具有极多的子模块,每个子模块内部元器件都是隐藏的故障点,极易影响整个系统运行的平稳性。因此,本文以三相MMC为研究模型,采用半桥型子模块结构,围绕绝缘栅双极晶体管(IGBT)开路故障分类及其定位展开研究。本文主要研究工作围绕以下几点展开:1、结合MMC的机理,基于PSCAD平台建立MMC仿真模型,对IGBT开路故障特性进行仿真研究,并分析桥臂电压、环流等物理量故障前后波形变化,同时采集实验数据。针对MMC不平稳的故障信号时间复杂度高导致特征提取效果不理想的问题,本文提出一种基于最大重叠离散小波包变换(Maximal Overlap Discrete Wavelet Packet Transform,MODWPT)能量熵的方法。该方法对原始故障信号进行6层MODWPT分解,进而通过能量熵技术进一步处理该信号,基于PSCAD平台建立MMC仿真模型,通过IGBT开路故障特性仿真及采集故障后的桥臂电压、环流,以欧氏距离作为评判指标,同时进行相关方法的对比验证,实验结果表明基于MODWPT能量熵方法的优越性,对MMC故障特征提取具有重要意义。2、针对深度神经网络(Deep Neural Network,DNN)在IGBT开路故障分类中,参数设置过于繁杂的问题,本文提出一种基于DNN-贝叶斯的故障分类算法。该方法以DNN作为分类器,采用贝叶斯迭代器对冗杂的DNN参数组合进行寻优,贝叶斯迭代器以之前的评价信息为基础,通过较少的寻优次数确定DNN最佳超参数组合,从而获得最优DNN分类模型。以基于MODWPT能量熵方法提取的特征向量作为输入,与多种方法进行对比,实验结果表明,基于DNN-贝叶斯的方法能够明显提升故障分类准确度,具有较强的鲁棒性。3、为获得故障分类后准确定位到具体的故障子模块位置,以及解决支持向量机(Support Vector Machine,SVM)核函数及其参数选择困难的问题,本文提出一种基于多核SVM的故障子模块定位算法。该方法通过随机搜索优化算法确定单一核函数的最佳参数组合,同时预先挑选出训练效果较好的单一核函数,采用累加权值的方法进行多核SVM的组合。结合MMC仿真模型进行实验,实验结果表明,由线性核函数与高斯核函数组合的多核SVM子模块故障定位算法,与基于单一核函数和其它组合核函数的SVM相比,故障定位准确率得到了显著提升,模型的正确性得到有效的验证,能够精确地找到故障子模块的具体位置。
其他文献
在生物学和医学领域,对细胞的检测是一项非常重要的内容,细胞通过显微镜来观察和记录,并通过计算机将图像进行存储。如何将细胞从图像中准确的分割识别出来和开发自动追踪细胞算法是细胞生物学研究的一大难题。对于悬浮细胞,细胞外形区别较小,空间分布分散,成像过程中夹杂噪声和细胞移动,这些都是悬浮细胞识别和追踪过程中的难题。本文围绕如何对悬浮细胞进行准确的识别和追踪做了如下工作:(1)本文先通过预处理操作对图像
学位
在流程工业中,需要建立基于数据驱动的软测量模型来获取一些难以直接测量的关键变量。数据的数量和质量对构造精准的数据驱动的软测量模型起着重要作用。不幸的,在流程工业中数据会面临样本不足或数据波动小的问题。有限的样本中很难获得足够的信息,会产生小样本问题,导致软测量模型的精度低。针对小样本问题,本文提出了一种新的基于T分布随机邻域嵌入(t-SNE)特征的虚拟样本生成方法。首先,使用T分布随机邻域嵌入(t
学位
最终执行元件作为安全仪表系统中的关键部件,是实际工业生产过程中安全防护的有效保证,已在天然气、石油化工、电力等领域得到应用。最终执行元件受到自身及其部件结构、软硬件、运行环境等的影响,导致安全仪表系统在运行过程中功能安全完整性降低,进而增加了生产现场发生事故的风险。因此,开发最终执行元件功能安全完整性检测装置,以实现对最终执行元件的功能安全完整性检测,对最终执行元件功能安全完整性评价具有重要的工程
学位
随着城市轨道交通智慧化技术的快速发展和传统业务模式的变革升级,各地城市轨道交通运营单位努力协调各方资源,着重以枢纽站为试点建设车站,打造分区域客流精准感知和高效管理的智慧车站。目前的枢纽运营所掌握的客流数据主要是车站总体进站量、出站量、换乘量等指标,可以分析枢纽总体客流变化趋势,但是无法对枢纽内部特定区域的客流进行推演分析,成为智慧车站实现客流高效管理与乘客高品质服务协同发展的重点和难点问题。因此
学位
表面等离子体共振(surface plasmon resonance,SPR)与荧光分析法作为生物检测领域的常用方法,各自具备显著的优势和自身检测原理所带来的短板,例如表面等离子体共振具有实时检测、免标记、高灵敏定量检测等优点,但特异性严重依赖所用生物试剂的特性;荧光分析法具有特异性强、耗样品量少和方法简单等优势,但荧光检测过程通常会受到背景荧光、荧光淬灭的干扰,导致难以进行定量分析。因此如何充分
学位
合成孔径雷达(Synthetic Aperture Radar,SAR)可以排除自然环境和人类干扰的影响,实时对地球表面目标进行探测,具有优异的对地观测能力。SAR在军事情报勘察、情报搜集等方面应用广泛,其中SAR图像目标识别技术更是当前目标识别及遥感图像解译中的热点问题,是SAR图像解译中的重要环节,具有重要的价值和应用前景。近年来,深度学习以其显著的学习能力和分类能力,在SAR图像解译和目标识
学位
课题面向桥墩病害检测无人机进行测距系统的设计。目前我国的许多桥梁桥墩的健康状况并不乐观,然而常用的人工桥墩病害检测方法需要耗费大量的人力物力,同时具有一定的安全隐患,桥墩病害检测始终缺乏安全可靠的检测手段。无人机技术的飞速发展为桥墩的病害检测提供了自由度更高的检测平台,其中避障问题是保障无人机在桥墩病害检测中安全、可靠飞行的重要前提。为了解决无人机在桥墩病害检测避障飞行中的距离测量问题,本文根据相
学位
地方红色课程资源是存在于每个师生身边的“活教材”。巧妙运用好地方红色课程资源对于引领学生树立坚定的理想信念、完成思政课立德树人的根本目标具有重要的实践意义。笔者通过在高中思政课教学过程中切入地方红色课程资源,优化教学环节,使其与思政课深度融合,从而提升高中思政课教学的实践效果,培育高中学生核心素养,最终构建具有校本特色的高中思政课有效教学的基本模式,为提升学校教育教学质量服务。
期刊
化工生产在工业中占有重要位置,其生产过程具有高度的复杂性和危险性,一旦发生故障,便会造成巨大的财产损失和人员伤亡。及时发现并排除故障,是保障系统稳定可靠运行的关键。生产数据的特征提取对故障诊断精度的影响很大,如何提取更有效的特征成为提高诊断精度的重要因素。但化工生产数据具有高维度、非线性的特点,传统故障诊断方法难以挖掘和提取数据中隐藏的有用信息,因此,设计一种能够有效提取数据深层次特征的方法对提高
学位
医师根据患者的CT影像绘制的器官轮廓决定了放射治疗的部位和剂量,在放射治疗计划中起着重要的作用。然而绘制水平的差异是放射治疗不确定性的主要原因之一,轮廓绘制过多会伤害其他正常器官,而绘制过少则疗效不好,绘制不良的器官轮廓可能会引发医疗事故。因此器官轮廓异常检测对于保障疗效是很有必要的,目前这部分工作主要是通过同行评审来完成,虽然能够有效降低发生医疗事故的风险,但是增加了医疗系统的负担,而且在某些医
学位