论文部分内容阅读
现如今,随着交叉学科研究风靡全世界,越来越多的数学家开始关注其他学科的模型,例如生物模型,化学模型和物理模型.在这篇文章中,我们将研究一个非常有趣的关于细菌趋化性的生物数学模型:Keller-Segel模型.Keller-Segel模型是由Keller和Segel在1970年[1,2]提出的,它主要描述的是网柄菌的生物趋化性.在这个模型中,细菌被一种化学物质所吸引,并且可以释放出同一种化学物质.我们研究的主要目标是对于两种不同的退化Keller-Segel模型,证明其弱解的全局存在性.这篇文章的主要内容如下:在第一章中,我们介绍了 Keller-Segel模型的背景信息.通过叙述原始模型的构造过程,我们希望读者能够更深入而全面的了解Keller-Segel模型.我们还列出了一些著名的简化模型以及优雅的结果,旨在向读者展示Keller-Segel模型的动人之处,从而吸引更多的人投身到研究中来.随后,我们陈述了此文灵感的来源,克服的困难以及得到的结论.我们还在这一章中给出了一些尚未解决的问题.在第二章中,我们研究了如下的退化抛物-抛物Keller-Segel模型:这里d≥3,扩散指数0<m<2-2/d其中,u(x,t)表示细菌的密度,v(x,t)表示化学物质的浓度.不失一般性地,我们假设v(x,0)= 0,即最初的容器中并没有化学物质,随后由细菌产生.为了证明弱解的全局存在性,我们首先要得到先验估计.对于已经被广泛研究的退化抛物-椭圆Keller-Segel方程,具有最佳常数的Hardy-Littlewood-Sobolev不等式是进行估计的关键:然而在退化的抛物一抛物Keller-Segel方程中,HLS不等式不再适用,因为v(x,t)无法由基本解的形式表出.因此,我们利用半群理论代替HLS不等式进行先验估计.以下关于半群的定义及估计是标准的.考虑柯西问题:定义0.0.1.设T>0,p≥1(?)以及(?).函数(?)满足是问题(2)在[0,T]上唯一的温和解.这里热半群算子et△为(?),其中G(x,t)是热核即(?)不难证明,上面定义的温和解也是方程的一个弱解.接下来,我们介绍一个著名的热核的最大Lp模正则性结论,它是进行先验估计的关键.引理 0.0.1.假设 1<p<+∞,T>0.那么对每一个 f ∈ Lp(0,T;Lp(Rd)),方程(2)在Lp(0,T;Lp(Rd))的意义下,有且仅有一个解h(x,t)满足h0(x)=0.进一步地,对所有的f∈Lp(0,T;Lp(Rd)存在一个只与p有关的正常数Cp,使得现在,应用最大Lp模正则性以及一些标准估计,我们得到了方程(1)弱解的先验估计:众所周知,弱解的L1模和L∞模有界是两个非常重要的性质.在进行先验估计的过程中,我们能够得到弱解的质量守恒.接下来,我们将应用Bootstrap迭代的方法证明弱解的L∞模是一致有界的.根据上面所得到的弱解的先验估计,我们能够通过构造(1)的正则化问题来证明方程弱解的全局存在性,即证明第二章的主要定理.我们考虑如下的正则化问题:对ε>0,其中d ≥ 3,0<m<2-2/d对初值u0ε(x)进行适当的假设,我们能够证明正则化问题存在一个经典解且满足定理0.0.1中所有的先验估计.在整个证明的过程中,我们主要遇到的困难是无法应用Aubin-Lions引理证明强收敛,因为只得到了的一致有界性而不是▽uε模的.因此,我们需要应用Aubin-Lions-Dubinskii引理[3]:引理0.0.2.设B,Y是Banach空间,M+是B中的一个非负半赋范锥,且满足M+ ∩Y≠(?),1≤p≤∞.如果(i)M+→B是紧的,(ii)对所有(ωn)(?)B,当n → ∞时,在B中有ωn→ω,在Y中有ωn→ 0,则ω = 0,(iii)U(?)Lp(0,T;M+ ∩ Y)且在 Lp(0,T;M+)中有界,(ⅳ)当 h→0 时,在 u ∈ U 中 一致地有 ||u(t+h-h)-u(t)||Lp(0,T-h;Y)→0,那么U在Lp(0,T;B)中是相对紧的.为了应用Aubin-Lions-Dubinskii引理,我们选取B = Lp(Ω),并构造是一个满足下面定义的Lp+1中的非负半赋范锥.定义0.0.2.设B是一个Banach空间,M+(?)B满足(1)对所有的u ∈M+,C≥0有有Cu ∈M+,(2)存在函数[·]:M+ →[0,∞),使得当且仅当u = 0时,[u]= 0,(3)对所有C≥0,有[Cu]= C[u],那么M+是B中的一个非负半赋范锥.从而,应用Aubin-Lions-Dubinskii引理,我们可以逐步的证明全局弱解的存在性.此外,当1<m<2-2/d时,弱解还是一个弱熵解.我们已经列出了证明第二章中存在性定理的重要思想,现在我们给出定理的完整叙述:在第二章的最后,我们证明了弱解的局部存在性并给出了一个爆破准则.当0<m<2-2/d时,退化抛物-抛物Keller-Segel方程弱解的有限时间爆破仍然是一个公开问题.第三章,我们在d ≥ 3的情况下提出了 p-Laplace Keller-Segel方程:其中p>1.这个模型是退化抛物-椭圆Keller-Segel模型的一个自然延伸,因为多孔介质方程和p-Laplace方程都叫作非线性扩散方程.二者虽然属于不同的领域,但在描述的现象上,使用的技巧上以及获得的结果上都有很多重合之处.在这个p-Laplace Keller-Segel方程中,我们找到了一个临界指数p,它与方程(1)中的m = 2-2/d扮演相同的角色.当p=3d/d+1时,如果(u,v)是方程(5)的一个解,我们构造u的质量守恒坐标变换以及相应的v的坐标变换那么(uλ,vλ)也是方程(5)的一个解.因此,我们将p = 3d/d+1称为临界指数.对一般的p,(uλ,vλ)满足如下的方程根据p的不同取值,我们将问题分为超临界情形和次临界情形.当1<p<3d/d+1时,我们称为超临界情形.在超临界问题中,当细菌密度很高时,聚合作用强于扩散作用,导致有限时间爆破;当细菌密度很低时,扩散作用强于聚合作用,导致无限时间的传播.相应地,当p>3d/d+1时,我们称为次临界情形.在次临界问题中,当细菌密度很高时,扩散作用强于聚合作用,阻止了有限时间爆破;当细菌密度很低时,聚合作用强于扩散作用,从而阻止了无限时间的传播.在第三章中,我们的主要目的是在超临界大初值假设下,证明方程(5)弱解的全局存在性.为了证明定理,我们首先要进行先验估计:对于p-LaplaceKeller-Segel方程,我们并没有像第二章一样得到u的质量守恒,这是一个公开问题.但是使用Bootstrap迭代方法,我们同样能够得到方程(5)弱解的L∞一致有界性.证明过程中的主要思想与定理0.0.2基本相同,但细节上却存在很大差异.得到弱解的先验估计后,我们构造方程(5)对应的正则化问题来证明本章中最主要的存在性定理:对于ε>0这里α(d)是d-维单位球的体积.对初值u0ε(x)进行适当的假设,我们能够证明正则化问题存在一个经典解且满足定理0.0.4中所有的先验估计.那么结合Aubin-Lion引理得到的强收敛以及一致有界估计得到的弱收敛,我们能够证明第三章的主要定理:定理0.06.设d≥3,1<p<3d/d+1,q=d(3-p)/p.如果u0∈L+1(Rd)∩L∞(Rd),A(d,p)=Cp,d3-p-‖u0‖Lq3-p>0,其中Cp,d=[qpp/Kp(d,p)(q-2)+p)p]1/3-p是一个常数,那么方程(5)存在一个非负的全局弱解(u,v),使得定理0.04中所有的先验估计以及定理0.05中的L∞一致有界估计都成立.定理的证明过程中,困难的部分是用单调算子理论得到非线性项的极限.下面的引理是单调算子的一个重要性质:引理0.0.3.对任意η,η’∈Rd,下列不等式成立其中C1和和C2是两个只依赖于p的正数.当1<p<3d/d+1时,p-Laplace Keller-Segel方程弱解的有限时间爆破仍然是有待解决的问题。