论文部分内容阅读
高频雷达通常被用于发现超视距的海面或空中目标,传统高频雷达包括高频地波雷达和高频天波雷达等,其中,高频地波雷达采用单一的地波传播模式,受地波衰减限制,其最大探测范围约为370km,无法探测距离更远的目标;高频天波雷达采用单一的天波传播模式,受电离层和自由空间衰减的影响,其探测范围大约为800~3500km,存在近距离探测盲区。可见,这两者都无法满足同时监测由近岸到中远海区域目标的需求,为了在岸基高频雷达系统中实现这一需求,本文提出了利用地波和天波的多种混合传播模式来发现目标的新型岸基高频雷达——天地波多模式混合的单站岸基高频雷达,以下简称为多模式高频雷达,并重点研究了该雷达系统中的目标信息获取方法。多模式高频雷达采用收发共置模式,同时向电离层和海面辐射高频垂直极化电磁波,利用天波和地波的多种混合传播模式进行目标探测。此时,不考虑电离层分层的情况下,该系统中可能存在四种天波和地波的混合传播模式:地波发射-地波接收模式(可以探测370km左右以内的近岸目标);地波/天波发射-天波/地波接收模式(可以探测600km左右以内的近、中海区域目标);天波发射-天波接收模式(可以探测300~1000km左右的中、远海区域目标)。在合适的系统参数及电离层状态下,该新型高频雷达可以完全覆盖0~1000km左右范围内的目标,远大于现有高频地波雷达的探测范围,并且不存在高频天波雷达的近距离盲区问题,弥补了单一传播模式的高频雷达探测范围分段受限的缺点。相比于传统的单站岸基高频雷达,多模式高频雷达系统利用天波和地波的多种混合传播模式发现目标,具有两个主要特点:一是多模式高频雷达系统的探测范围大,且探测范围与系统的频率和电离层状态相关;二是多模式高频雷达系统中不同传播模式的探测范围有重叠部分,会导致同一目标存在多种传播模式回波,或者同一回波来自于多个目标的情况。结合这两个特点,针对多模式高频雷达目标信息获取的相关问题,论文开展了以下四个主要内容的研究:第一,多模式混合系统探测模型建立。在获取目标的距离信息时,需要根据目标回波对应传播模式的探测模型,将目标回波距离(回波时延乘以电波速度)转换为目标地面距离。本文针对海面和空中目标,建立多模式混合系统探测模型,并推导了各个传播模式目标回波距离与地面距离间的转换公式。为了初步验证所建立的多模式混合系统探测模型,本文提出一种探测模型验证方法,即利用确知信息目标的多模式回波估计电离层反射高度,然后利用电离层探测站的实测数据验证电离层反射高度估计值。第二,多模式混合系统探测能力分析。主要研究多模式高频雷达系统的探测范围,并分析不同系统频率下各个传播模式的探测范围,为系统的频率选择以及后续的多模式目标跟踪算法提供先验信息。为了获取更加准确的系统探测范围,本文进一步研究了电离层对多模式高频雷达系统探测范围的影响。第三,多模式混合系统目标回波距离信息获取。多模式高频雷达利用地/天发-天/地收和天发-天收模式发现中远海区域的目标,这两种模式的目标回波距离可达到1000km左右,依靠扩大信号脉冲周期来获取1000km左右的无模糊距离探测范围会严重降低发射信号占空比,从而影响系统的性能。因此,单站雷达系统需要在不降低信号占空比的情况下设计探测信号,而这样会导致远距离目标回波出现距离模糊问题,那么,获取正确的目标回波距离信息需要先解决距离模糊问题。本文提出了两种解决距离模糊的方法:一种是基于正交互补编码信号的距离解模糊方法,利用正交互补编码的互相关特性,构造循环时延滤波器来处理回波信号,不同时延滤波器的输出即为不同距离范围的目标回波;另一种是基于Alpha相位调制的距离解模糊方法,对原发射信号进行Alpha相位调制与解调处理,将距离模糊的目标回波搬移到其他频率范围内,以牺牲无模糊多普勒范围来增大无模糊距离范围。第四,多模式混合系统目标运动信息估计。由于多模式高频雷达系统中存在多种传播模式,估计目标的地面距离和速度等运动信息需要先判断目标回波的传播模式,然后将同一个目标的多模式回波进行融合处理。本文提出多模式目标跟踪方法,直接从目标的多模式回波中估计目标运动信息,将回波模式判断与多模式回波融合处理在一个算法中同时完成。多模式目标跟踪方法通过建立多模式量测模型,计算回波与传播模式以及目标的关联假设,最终在地面坐标系获得目标的唯一航迹,从而正确估计目标的地面距离、速度和方位等运动信息。本文首先提出基于贝叶斯框架的多模式目标跟踪算法,然后,为了进一步提高算法的运算效率和跟踪性能,又在该算法的基础上,提出改进的以探测范围为先验信息的多模式目标跟踪算法。综上所述,本论文针对多模式高频雷达系统建立了多模式混合系统探测模型,分析了系统中各模式的探测范围以及电离层和系统频率的影响因素,解决了距离模糊问题以获取目标回波距离信息,提出了多模式目标跟踪算法以估计目标的运动信息。最终,初步完成了不考虑实际电离层变化和杂波干扰等情况下的目标信息获取,为多模式高频雷达的后续研究奠定了基础。