基于深度学习的纺织品瑕疵检测和分类

来源 :华南理工大学 | 被引量 : 0次 | 上传用户:yuswe
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
纺织品的瑕疵直接影响了产品的质量和纺织工厂的经济效益,瑕疵检测是纺织业生产过程中的一个重要环节。当前大部分工厂仍然使用人工在验布机上检测纺织品的质量是否合格。使用计算机视觉技术代替人工进行瑕疵检测和分类可以避免人工检测存在的检测速度慢、判断标准主观性强、漏检率高等缺点。但是当前的瑕疵检测和分类方法都属于监督学习,需要大量的瑕疵图像对网络进行训练,而在实际的生产过程中瑕疵图像出现频率较低。针对这一现状,本文对纺织品的瑕疵检测和分类进行了分析和研究,提出了基于深度学习的瑕疵检测方法和分类方法,仅需要少量的瑕疵图像对网络进行训练。研究内容主要为以下两个方面:1)纺织品瑕疵的检测。本文提出了去噪自编码器(Denoising Autoencoder,DAE)和卷积神经网络(Convolutional Neural Network,CNN)组合的瑕疵检测模型。首先,使用正常图像训练去噪自编码器,提取瑕疵特征,然后使用CNN进行瑕疵检测。DAE-CNN组合模型使用大量易获取的正常图像和少量的瑕疵图像作为训练集。实验证明,DAE-CNN组合模型的准确率和F1-Score均优于常用的VGG16卷积模型,而且本文提出的瑕疵检测模型计算量更小,大幅提升了瑕疵检测的速度。2)纺织品瑕疵的分类。CNN是常见的分类模型,但是瑕疵样本存在样本不均衡的问题,而CNN模型在稀有类别分类中的准确率较低。由于随机森林(Random Forest,RF)不易受到样本不均衡的影响,本文提出了CNN-RF组合的瑕疵分类模型,在保证了常见类别准确率的前提下,提高了稀有类别的准确率。实验证明,CNN-RF组合模型的准确率和F1-Score均优于单独的CNN模型,而且本文提出的瑕疵分类模型大幅提升了稀有类别分类的准确率。
其他文献
微细通道由于尺寸小和传热效率高等特点,能够把集成元件内高热流密度的热量及时传递到周围介质中,有着广阔的应用前景。采用声场和电场两种主动强化技术并结合纳米流体被动强化技术,研究声场及电场作用下微细通道内纳米制冷剂流动沸腾特性,主要研究内容包括:(1)声场作用下微细通道内纳米制冷剂流动沸腾传热研究。搭建了可放置超声波换能器的微细通道试验段,声场功率和频率范围分别为0~60W、0~40kHz。用超声波振
目的:帕金森病(Parkinson’s disease,PD)是常见的神经退行性疾病,研究发现PD疾病进展与小胶质细胞过度激活引起的神经炎症有关,但具体机制尚不明确。本研究旨在探讨在MPP+/MPTP模型中MIF通过NF-κB信号通路调节小胶质细胞NLRP3炎症小体的形成对PD模型的影响,阐述MIF介导的神经炎症在PD发挥的作用和机制。方法:本实验采用MPP+处理的小胶质细胞Bv-2细胞构建PD体
蓝斑背肛海兔(Notarchus leachii freeri),属软体动物门(Mollusca)、腹足纲(Gastropoda)、中后鳃亚纲(Opisthobranchia)、无楯目(Anaspide)、海兔科(Aplysiidae)。其卵群具有药用及食用价值,又被称为“海粉”及“海挂面”。海兔及其卵群含有多种生物活性物质,包括肽、蛋白质、次生代谢物等,其结构和生物活性已被广泛报道。但对于多糖的
K417G镍基高温合金是一种典型的沉淀强化型合金,具有良好的组织稳定性和优异的高温力学性能,广泛应用于航空发动机和燃气轮机等热端部件。近年来,随着工业技术的发展,对K417G合金性能提出了更高的要求。常通过提高合金中的Al、Ti元素含量,以提高γ′-Ni3(Al,Ti)强化相的含量进而提升K417G合金的综合性能。然而,随着γ′相含量增加,K417G合金的裂纹敏感性大幅提高,导致合金焊接性严重下降
BaTiO3因具有特殊的介电、压电和铁电性能,是制备多层陶瓷电容器(MLCC)、埋入式电容器、光记忆和电光器件等的主要材料。小于150 nm的高性能四方相BaTiO3纳米晶粉体是当前大容量超薄型MLCC器件的的关键原料,因此开发此类粉体的制备新方法和合成出满足微型化MLCC器件需求的BaTiO3纳米晶粉体具有重要意义。此外,具有特殊形貌的BaTiO3粉体可以满足特定场合的需求,使其应用得以扩展,这
肿瘤细胞所处的机械环境在肿瘤的发生发展中的角色越来越受到重视,尤其是机械环境中的流体剪切力。多发性骨髓瘤(MM)是一种浆细胞瘤,由于外周血中的MM细胞会进行血液循环而转移到新的骨髓区域并大量增殖,进而引起复发性以及难治疗等问题,因此了解MM细胞在转移过程中以及转移后的力学调控机制及分子机制,对解决当前遇到的问题将至关重要。MM细胞的转移和转移后的发展涉及转移时的黏附和转移后的增殖两个过程,然而这两
尼龙6作为一种半结晶热塑性工程塑料,是世界上聚酰胺材料产量最大的品种之一,广泛应用于汽车、电子、电气、服装等领域;但随着多样化市场对产品的需求不断增加,单一的尼龙6树脂已经不能满足实际需求,对高性能的尼龙6复合材料的开发引起了人们更多关注。石墨烯的出现为开发高性能的尼龙6复合材料提供了一种新的思路,但石墨烯表面不含官能团,在尼龙6基体中的分散性非常有限,严重限制了石墨烯在聚酰胺材料中的应用。本文以
近年来,无线电能传输作为一种新颖的技术越来越为大众所熟知。相比有线电能传输的传统方式,无线电能传输技术无需实体线路即可为负载供电,能够有效避免由于导线老化而导致的安全隐患,并且在一定程度上减少了有色金属的消耗。磁耦合谐振式无线电能传输(MCRWPT,magnetically-coupled resonant wireless power transfer)由于其传输效率高以及传输距离适中,逐渐成为
双酚A(Bisphenol A,BPA)具有良好的延展性,被广泛用于生产婴儿奶瓶,玩具和医疗设备。由于这些生活垃圾的不适当处理,双酚A在各种环境介质中陆续被检测出来。生物酶法由于其绿色高效的特点广泛用于处理双酚A,但酶易溶于水,稳定性较差,限制了其应用,因此提出了固定化酶的概念。本研究采用铜基金属有机骨架材料(Cu-PABA)固定化漆酶,使用共沉淀的方法在室温水环境中一步合成生物复合材料(Cu-P
近年来,基于有机发光二极管(Organic Light Emitting Diode,OLED)的显示技术因其在柔性显示领域的广阔应用前景而备受关注。OLED通常需要在图案化的电极基底上制备发光二极管。电化学聚合是一种制备电活性导电聚合物薄膜的有效方法,有机层的电化学沉积在电极上是自发选择的,有效减少位置误差,聚合薄膜通常是化学交联的,不溶于普通溶剂,有利于制备多层光电器件。我们课题组开发了一种基