面向3D点云的深层神经网络池化研究

来源 :北京交通大学 | 被引量 : 0次 | 上传用户:zhoudeyou
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
近年来,随着深度学习在图像、自然语言等规则拓扑结构的数据上大放异彩,研究者们尝试将深层神经网络推广应用到3D点云数据,并开展了大量关于3D点云神经网络卷积算法的研究。但由于3D点云拓扑结构的不规则特性,特征池化算法,作为推动深度学习成功的一个重要部件,却较少人问津。特征池化算法在深度学习框架中,不仅起到提升计算效率的作用,同时能够提升模型的鲁棒性,是深度学习应用在3D点云数据上必不可少的一环。为此,本文拟根据3D点云的数据结构特点,针对低分辨率点云完整拓扑结构保留问题、重要特征点及其局部信息保留问题,开展面向3D点云的神经网络特征池化算法研究。本文的主要研究内容和贡献如下:(1)提出了全局特征引导的池化算法。针对现有方法构建稀疏点云只考虑了输入坐标信息的问题,本文提出基于深度学习的稀疏点云构建算法,通过全局特征引导下的输入点排序,为下游神经网络自适应地构建稀疏点云拓扑。针对模型自适应构建的稀疏点云无法反映输入点云完整拓扑结构的问题,本文通过增加倒角距离损失项,拉近稀疏点云与输入点云的分布。基于所提特征池化算法的多层分类模型EC-GDP,在两个物体分类公开数据集上,将基准模型的分类准确率分别提升0.3%和1.4%。(2)提出了融合局部特征的池化算法。由3D点云的分类实验可知,池化后点云的拓扑结构对于模型整体的性能有较大影响。针对此问题,本文基于随机选点的方法,构建稀疏点云拓扑结构。为了解决随机选点容易丢失重要特征点的问题,本文结合局部特征聚合算法,提出了融合局部特征的随机池化算法。在两个物体分类数据集上的实验结果表明,将随机池化算法引入到单层分类模型DGCNN中,可以显著提升其0.5%和1.2%的分类准确率。此外,本文还针对3D点云分割任务,基于随机池化算法构造多层点云分割模型,并在3D点云语义分割数据集S3DIS上,将基准模型的平均m Io U提升6.1%。(3)提出了基于邻域互信息的池化算法。全局特征引导的池化算法不能为下游神经网络提供完整的输入点云拓扑结构,随机池化算法不能针对不同任务自适应的选取重要特征。针对以上两个问题,本文通过定义输入点特征与其邻域特征的互信息,来表征每个点的重要性,从而使得基于互信息构建的稀疏点云拓扑,既能够保留输入点云的拓扑结构,也可以为下游神经网络保留重要的特征信息。在两个物体分类数据集上的实验结果表明,基于所提互信息池化算法的EC-MIP模型,将基准模型的分类准确率分别提升0.6%和2.0%。
其他文献
细粒度图像分类是计算机视觉领域中的一个重点研究方向,由于细粒度图像数据存在难以收集与标注昂贵的特性以及细粒度类别间相似度高的特点,其识别难度往往远高于通用图像数据的识别。现有的细粒度图像分类方法尽管在一定程度上缓解了类间差异小的问题,但这些方法的训练却倾向于依赖大量数据,而在样本量少的情境下无法很好地完成分类。为了解决上述问题,研究人员提出了针对细粒度图像分类场景下的小样本学习方法,这些基于小样本
随着通讯技术和传感器技术的快速发展与普及,能够融合现代通信与网络技术的智能网联汽车(CAVs)将会逐渐替代普通人工驾驶汽车(HVs)。CAVs通过车与车、车与道路设施之间信息的交互,来具备感知周围环境的能力,从而做出智能的决策,以实现安全、舒适、节能、高效的行驶要求。当前交通存在由于信息滞后导致的交通震荡问题,该现象普遍出现在道路前方路口有红绿灯的情况。且现阶段研究对于道路上CAVs和HVs大量共
移动互联网的普及伴随着大量网络安全问题的出现,许多新型的网络攻击方式层出不穷,危机事件频发。我国互联网安全态势仍然严峻。如何应对网络攻击,保障网络安全是我们亟待研究的问题之一。面对日新月异的攻击手段,传统网络流量异常检测方法已经不适用于当前的网络环境。传统网络流量异常检测方法过于依赖对特征的人工选择,缺乏自适应性,面对新类型的异常检测准确率低;在面对海量高维流量数据时,难以有效提取其中的关键特征,
多智能体系统的分布式协同控制在很多领域有着诸多应用,例如,无人飞行器的编队控制,传感器网络的协同控制等。近几年来,随着学者的深入研究,多智能体系统的控制条件也被考虑的更加复杂和全面。比如,我们在考虑系统实现控制目标的同时,也希望能够达到减少通信次数,节省能量消耗的目的。为此,有学者提出事件触发控制策略和时间触发控制(采样控制)策略。这两类控制都是在控制器中引入触发时刻,使得智能体的控制器由原先的连
云计算作为二十一世纪初期的新兴事物,目前已步入较为成熟的发展阶段,其依托于虚拟化技术,将各类资源进行有效整合和管理,向用户提供了高效的计算服务和应用软件。近年来,图像处理、地震预测、基因组测序等应用程序生成的工作流日渐复杂,使得越来越多的工作流被提交到云中处理。为了满足各类场景下不同用户的计算要求,国内外云服务提供商纷纷升级扩展云数据中心,但是目前数据中心的资源利用率较低,使得高能耗问题成为云服务
在现代化的大型制造车间中,为节省人力、提高车间生产效率,大量企业都为生产车间和立体仓库引入了AGV系统。AGV(Automated Guided Vehicle,自动导航小车)是指装备有电磁或光学等自动导引装置,能够沿导引路径行驶,具有各种移栽及安全保护功能的运输车。企业在智能物流解决方案中使用AGV,不仅是为了实现内部物流的柔性化,更重要的是借此打通生产各流程,推进生产全过程的数字化,最终实现打
稀疏线性逆问题是指在测量矩阵已知的情况下从观测样本恢复出原始的稀疏信号,在现实生活中众多学科和领域发挥着重要的作用。在通信系统中,通过利用无线信道的稀疏特性,压缩感知理论和其中的稀疏线性求逆算法实现了信令开销的降低和用户容量的扩展。近年来,基于神经网络的稀疏线性求逆算法以其优异的重建性能和快速的收敛特性被广泛地研究。然而,这些机器学习算法忽略了传统迭代算法中的一个关键特征,那就是不同稀疏度的稀疏信
语音增强的目的是通过设计一种高效的信号处理算法,去除带噪语音中的各种干扰噪声,恢复出干净的增强语音,同时要保证增强语音有较高的恢复质量和可理解度。传统的语音增强算法在使用前需要对语音和噪声信号做出严格的假设,这限制了其在一些复杂的现实场景中的应用。近年来,无需任何假设、具有强数据建模能力的神经网络得到研究人员的广泛关注,成为本领域的主流算法。本文主要针对提高卷积神经网络全局建模水平和语音增强能力展
高速飞行列车是利用低真空环境和超音速外形减小空气阻力,通过磁悬浮减小摩擦阻力,实现超音速运行的运输系统。高速飞行列车的运行速度可以达到1,000~4,000km/h,具有高效、节能和环保等优点,有望成为未来的新型交通方式,近年来逐渐成为研究热点。由于高速飞行列车速度比已有轨道交通系统列车的速度高出许多,现有轨道交通系统的运行控制系统无法完全适用于高速飞行列车。因此,有必要针对高速飞行列车的特点,对
随着5G网络全球化部署进程不断提速,各行各业提出运行在用户设备(User Equipment,UE)上的计算密集型和时延敏感型的新型应用。虽然移动云计算(Mobile Cloud Computing,MCC)把高计算任务通过公用网络上传到集中式的云服务器上增强了UE的计算和降低UE的能耗,但是云服务器在空间上远离UE导致传输数据需要花费更高的时延。移动边缘计算(Mobile Edge Comput