论文部分内容阅读
碳包覆金属纳米颗粒作为一种新型的碳纳米复合功能材料,既具有金属纳米粒子独特的电学、磁学、光学和化学特性,又结合了石墨化碳层优异的稳定性、生物相容性和介电性能,在能源、环境、医学等众多领域有着巨大的应用潜力。但是,现有制备工艺存在着诸如产物杂质多、产率低的问题,对碳包覆金属纳米材料的广泛应用造成了一定的限制。本文创造性地提出了一种基于微波诱导金属放电制备碳包覆金属纳米材料的技术路线。首先选取二茂铁为金属源,详细研究了有机溶剂种类、微波辐照功率、辐照时间、原料添加比、分散剂对纳米复合材料产率、形貌和结构的影响,并选择最优化参数条件下的产物进行了稳定性能、磁性能和电磁波吸收性能测试,同时在制备碳包覆Fe/Fe3C纳米粒子的基础上进一步合成了碳包覆Fe/Fe3O4纳米颗粒,并测试分析了其用作锂离子电池阳极时的电化学性能。随后在相同条件下进行了碳包覆Ni基纳米颗粒和碳包覆Co基纳米颗粒的制备,并详细研究了对应产物的形貌、结构和性能。最后基于文献综述和实验研究,推测出了微波诱导金属放电条件下碳包覆金属纳米颗粒的形成机理。研究表明:微波诱导金属放电可以快速制备出纯度高、核壳结构完整、粒径均匀的碳包覆Fe/Fe3C纳米颗粒,制备过程中,选用能够与金属源互溶的有机溶剂更容易制得该纳米材料,并且噻吩的加入可有效提高纳米颗粒的分散性。相对于其他合成方法,该方法还具有明显的产率优势,产量为原料中二茂铁添加量的25~30wt%。碳包覆Fe/Fe3C纳米颗粒经氧化处理可转化成碳包覆Fe/Fe3O4纳米颗粒,该产物用作锂离子电池阳极材料时,表现出优异的充放电循环性能和倍率性能,且与商业用Fe3O4纳米颗粒相比,具有更高的可逆容量。采用微波诱导金属放电同样能制备出核壳结构完整的碳包覆Ni基和碳包覆Co基纳米颗粒,表明该方法具有广泛的适用性。性能测试表明,碳包覆Fe基和碳包覆Ni基纳米颗粒具有优异的抗腐蚀性能和热氧化稳定性,其最高抗氧化温度分别可达420℃和300℃,同时两种产物在电磁波吸收方面都表现出宽频带、薄涂层、强吸收的特点,满足现代工业对吸波材料的要求。此外,三种纳米材料都表现出一定的超顺磁性,用作催化剂时可实现快速分离。微波诱导金属放电产生的多种效应的耦合可引发有机金属化合物中金属单质的微放电,该现象与微波金属放电创造的高温环境共同作用,促进碳包覆金属纳米颗粒的形成和生长。