论文部分内容阅读
信息化的飞速发展以及新型光学器件的出现,对光纤以及光纤器件性能提出了更高要求。比如,高功率激光系统要求光纤结构利于提升泵浦效率、降低光纤辐照损伤;相干光通信要求光纤具有保偏性能;而调制器、光开关和变频器等光学器件又要求光纤具有较高的非线性光学效应。传统的单包层光纤已不能满足这些需求。为满足这些需求,本课题研制了三种新型微结构磷酸盐玻璃光纤。取得结果如下:(1)首先探索了铒镱共掺磷酸盐双包层光纤的制备过程。研究了铒镱共掺磷酸盐玻璃的发光性能,确定了Er2O3和Yb2O3的最佳掺杂量分别为1 mol%和2 mol%。然后通过纤芯大块玻璃的熔制以及冷加工,最后在拉丝塔上拉制出直径1.4-1.6 mm的纤芯棒,其Er3+离子掺杂浓度达到1.184×1020 cm-3,Yb3+离子掺杂浓度达到2.368×1020 cm-3。(2)研究了不同含量的BaO以及氟化物对磷酸盐玻璃物理化学和热学性能的影响。结果表明,随着玻璃中BaO含量的增加,玻璃的密度、强度、折射率、Tg、Tf等性能逐渐增大,玻璃热膨胀系数降低,玻璃机械性能和热性能得到改善,玻璃的网络结构加强。而在磷酸盐玻璃中添加氟化物(KF、CaF2、BaF2),由于F-离子对玻璃网络结构的弱化作用,玻璃结构变得松散,玻璃机械性能及化学稳定性都变差,不适用于光纤的制备。最后优化了磷酸盐玻璃的物理化学性能和热性能,并确定了光纤内外包层的配方,分别为56.7P2O5-10.5K2O-4Al2O3-4.2La2O3-22.6BaO和64.5P2O5-13K2O-12CaO-2.5Al2O3-8B2O3。(3)优化了大块磷酸盐玻璃熔制工艺,包括熔融、通气、除水等,制备了无气泡、无条纹、均匀度较好和羟基含量低(1.16×1019 cm-3)的激光大块玻璃。采用管棒法制备了双包层光纤预制棒,并在拉丝塔上拉制了铒镱共掺磷酸盐双包层光纤,其纤芯直径是78-81μm,NA为0.053,内包层277-282μm,NA为0.356,外包层1483-1518μm。测试得到双包层光纤在1310 nm处的损耗为7.15 dB/m,对976 nm泵浦光的吸收系数可达253.9 dB/m。测试磷酸盐双包层光纤激光性能,可以看到光纤在1.5μm处具有Er3+离子的放大自发辐射,其强度随着使用双包层光纤的长度先增强后减弱,长度为7.5 cm时强度最强。(4)探索了铒镱共掺保偏光纤制备过程。设计了保偏光纤预制棒的尺寸和结构,并通过管棒法加工了保偏光纤预制棒,在拉丝塔上拉制了铒镱共掺磷酸盐保偏光纤。(5)探索了非线性光纤的制备。采用溶胶-凝胶法和静电喷雾法相结合的方法制备了Ba2TiSi2O8纳米颗粒。Ba2TiSi2O8颗粒整体呈圆球形,分散性好,具有高结晶度和空心的结构。通过1064 nm的皮秒激光器的激发,测得Ba2TiSi2O8颗粒具有倍频效应。后续,Ba2TiSi2O8颗粒将被掺杂在磷酸盐玻璃中制备非线性光纤。