基于混合域的盲图像水印优化算法研究

来源 :西华大学 | 被引量 : 0次 | 上传用户:handong0319
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着信息数字化技术和嵌入式设备的不断发展成熟,人们不仅能够生成大量多媒体内容,而且还可以编辑、上传和共享此类数据到互联网上。互联网数据的可获得性意味着内容提供者必须面临如何防止非法侵权,欺诈性篡改或任何其他形式的对敏感内容的身份验证。数字水印技术是解决上述问题的有效方法之一,并且已经在各种信息安全领域中得到应用。在原始内容中嵌入任何假定的内容(例如音频,文本,数据或视频),嵌入的数据在不损害原始内容质量的前提下为其提供真实性验证和版权保护。理想的数字图像水印方案需要在安全性,鲁棒性和不可感知性方面满足数字图像的要求,这促使许多研究人员朝着这个方向努力。为了提高算法的效率和有效性,优化参数起着非常重要的作用,然而现有的大多数水印算法并没有考虑这一点。在本文中,我们研究了根据图像内容优化参数的水印算法,还特别调查了基于混合域和人类视觉系统(HVS)的健壮数字水印算法。在调查结果的基础上设计了新颖的鲁棒水印方案,它们可以抵抗已有水印方案预期遭受的多种攻击并实现高的不可感知性。本文的主要研究内容如下:(1)可靠的数字水印系统应确保高的不可感知性和鲁棒性。本章提出了一种基于噪声可见度函数(NVF)的盲图像水印优化算法,该算法利用DCT变换和QR分解将有意义的水印图像嵌入到载体图像中。在嵌入过程中,根据水印信息和正交矩阵Q的第一列中第二行系数和第三行系数之间的关系,构造含水印图像。优化的嵌入强度通过平衡水印嵌入能量与水印感知透明度获得。Arnold变换确保水印方案的安全性。此外,基于NVF的人类视觉模型用于确定水印嵌入区域。实验结果表明,该算法对单一和组合攻击具有较好的鲁棒性,含水印图像的感知质量优于其他相关算法。(2)针对图像的局部属性,一种利用萤火虫算法(FA)搜索不同嵌入强度的优化方案被提出。所提出的算法是一种基于块的方法,利用方差像素值选择重要块以嵌入水印,水印信息是二进制徽标。(1)具有最低方差值的前N个图像块被确定为嵌入区域(N=嵌入的水印位)。(2)FA应用于每个目标块来搜索局部最佳嵌入强度,以取得不可感知的性和鲁棒性的平衡。(3)通过检查正交矩阵U的系数分量U2,1和U3,1来嵌入每个水印位,正交矩阵U是从DCT变换图像块的奇异值分解(SVD)中获得。提取过程满足盲水印要求。为了增加安全性,(4)逻辑混沌映射生成伪随机链,这有效地保证了隐藏信息和原始信息之间位置关系的随机性。实验结果表明,与某些相关算法相比,提出的算法不仅具有更高的感知能力,还提供更好或相当的鲁棒性。
其他文献
大学生的体质健康问题越来越引起社会各界的广泛关注,大学生作为国家发展的新生力量,其体质健康关系着国家是否能有足够的力量迎接富强道路上的艰难险阻。但随着科技现代化的到来,人们的生活方式发生了很大的改变,大学生的体质健康状态也逐年下滑。机器学习方法正在以各种形式被应用于社会生活的方方面面,在很多领域为人们生活提供了方便。本文主要针对大学生体质健康问题,运用机器学习的方法,对不同类别体质的大学生进行运动
图像及视频分割作为多媒体数据内容挖掘与理解的关键步骤,成为近年热点研究的话题之一。视频协同分割作为视频处理的关键技术,相比诸多需要大量标注进行监督学习的方法,其通过挖掘视频间的相似性信息来弥补监督信息不足的缺点。同时,当下深度学习技术已广泛应用在许多领域,但多数深度学习技术依赖大量的数据标注。为解决获取成本高且时效性较低的数据标注的问题,迁移学习被研究者提出,以实现将已有的知识应用到目标任务中。无
入侵检测是网络安全技术的热点之一。通过分析从网络环境中提取到的数据,它可以检测是否有入侵行为的发生。随着计算机网络的不断发展,不断增长的网络流量给入侵检测带来了挑战。这使得入侵检测需要处理的数据量越来越大,而硬件的处理能力却并没有以相同的速度进步。为了提高入侵检测方法的检测性能,对数据进行降维是重要的研究内容。特征选择是数据降维的重要措施之一,它可以加快入侵检测的速度和提高入侵检测的性能。特征选择
网络中影响力节点的识别具有重要的社会意义和实际应用价值。传统影响力节点识别算法多以无符号网络为媒介,仅考虑个体间的正向链接关系。然而在真实的网络环境中,个体之间的联系不仅存在积极正向的关系,还存在消极负向的关系。一些基于符号网络的节点影响力识别算法也只是在传统识别算法的基础上进行简单改进,没有充分考虑节点间链接的正负属性。为准确识别出符号网络中的影响力节点,本文出了一种基于符号网络节点间依赖关系的
随着计算机网络技术的飞速发展,人们的交流变得更加便捷。然而,在网络中的交流可能会涉及一些重要内容,比如:个人的账户密码、企业的机密、国家的保密文件等。在传输的过程中,数据的安全性也受到人们的关注,隐写术也应运而生。隐写的载体可以是图像、文本、视频、音频等。日常沟通中图像占有较大的比重,因此本文采用的以图像为载体。针对隐写图像安全性、鲁棒性和最佳嵌入位置等方面的不足,研究与分析相关成果的基础上,提出
近年来,在线社交网络在世界范围内迅速普及,成为人们日常交流、信息获取和讨论热点事件不可或缺的工具。人们加入多个不同社交网络平台,如微博和推特,能够同时享受不同的服务。作为跨平台用户的自然人则充当了连接多个网络的桥梁。跨社交网络用户对齐问题旨在从多个不同社交网络上的众多虚拟账户中寻找相同的自然人。该问题由于其在跨网络商务推荐、链路预测、网络空间安全等应用领域的潜在实用价值受到学术界和工业界的广泛关注
近年来,自然语言处理各个领域取得迅猛的发展。支撑发展的核心技术之一—深度学习,在学术领域和工业界均取得了巨大的成就。许多学者们用深度学习技术来处理文本信息,借助神经网络和注意力机制进行文本情感色彩的判断。由于语言本身的复杂性,一个句子、一段文字可能会表达出多个不同的感情倾向,在借助深度学习技术分析较长篇幅文本的情感极性时遇到瓶颈。因此,将长文本进行细粒度的划分,从方面级的角度分析文本的情感成为当下
动态阈值神经P(DTNP)系统是一种新型分布式和并行计算模型,它结合了神经元的脉冲机制和动态阈值机制。DTNP系统在理论上已经被证明是图灵通用计算设备。本文主要研究DTNP系统与多尺度变换结合在图像融合中的应用,包括多焦点图像融合、红外与可见光图像融合和多模态医学图像融合。本文主要的工作和贡献如下:(1)提出了一种具有局部邻域结构的二维DTNP系统。(2)提出了一个基于DTNP系统的多焦点图像融合
疲劳会使司机在驾驶时产生睡意,这是交通事故发生的重要原因之一。因此如果能够监测司机的实时状态,在其有睡意的时候给予警告,可以有效预防交通事故的发生。当前存在的嗜睡检测技术大致可以分为三类:(1)基于车辆参数的检测技术;(2)基于生理参数的检测技术;(3)基于视觉特征的检测技术。基于视觉特征的检测技术仅需要车载摄像头对司机的驾驶状态进行监控,相比于基于生理参数的方法所需成本更低,且不会影响司机的正常
脉冲神经P系统(简称SNP系统)是受神经元通过脉冲方式处理和交流信息启发而提出的一种分布式并行计算模型。该系统提供了一种新的非传统高性能计算模型和思想,是膜计算领域中的热点话题。本文研究了一种SNP系统变体,带多通道和多符号的脉冲神经P系统(简称SNP-MCS系统)。SNP-MCS系统有两个特征:多通道和多符号。即,每个神经元都有一个或多个突触通道来连接后继神经元且每个神经元内都有多种类型的脉冲。