【摘 要】
:
数据世系用于描述数据产生、演化流程和数据源信息,在数据质量评估、数据溯源、信息安全领域发挥着日益重要的作用。世系工作流是数据世系的主要描述结构,随着人们对数据质量、溯源要求的日益提高,对世系工作流进行共享的需求愈加迫切,世系工作流中包含数据产生关键操作、流程等敏感信息,对其进行共享发布不可避免地带来隐私泄露问题。本文针对已有世系工作流结构隐私保护方法存在的不足,研究能够有效维持工作流时序约束和拓扑
论文部分内容阅读
数据世系用于描述数据产生、演化流程和数据源信息,在数据质量评估、数据溯源、信息安全领域发挥着日益重要的作用。世系工作流是数据世系的主要描述结构,随着人们对数据质量、溯源要求的日益提高,对世系工作流进行共享的需求愈加迫切,世系工作流中包含数据产生关键操作、流程等敏感信息,对其进行共享发布不可避免地带来隐私泄露问题。本文针对已有世系工作流结构隐私保护方法存在的不足,研究能够有效维持工作流时序约束和拓扑结构可用性的高强度隐私保护方法。论文主要工作如下:(1)针对现有基于差分隐私与d K序列的图匿名发布方法对世系工作流节点流向特征以及工作流整体时序依赖关系可用性维持较弱问题,提出基于差分隐私的世系工作流隐匿发布方法DP_WPP,引入输入/输出度d K模型,用以描述工作流节点度和方向的特性;利用差分隐私机制实现对工作流概要特征的差分保护;同时在工作流重构过程中,引入Before and After序列结构,实现重构工作流满足差分约束的同时兼顾时序特征的有效维持。(2)针对已有图结构隐私保护方法对表征工作流时序特征的拓扑结构维持效果较弱的问题,在k-度匿名模型的基础上,提出兼顾拓扑可用性的工作流匿名发布方法Tm WAP,通过引入基于拓扑序列的分层模型,实现对工作流拓扑时序特性的有效提取,并设计拓扑损失函数度量拓扑时序特征的可用性;通过构建基于分层模型的工作流最小拓扑子图,设计以拓扑损失函数为依据的启发式匿名策略,在k-度匿名化的过程中实现最优图匿名操作的挑选,达到兼顾工作流k-度匿名隐私保护和拓扑结构可用性维持的效果。理论分析和实验结果表明所提方法在实现工作流隐私保护可度量的同时兼顾工作流可用性的高效维持。
其他文献
知识库问答是自然语言处理领域中的一项重要任务,其目的是根据自然语言描述的问题,从知识库中查找或推断出问题的答案,具有重要的研究价值和意义。如何跨越自然语言与知识库查询语言之间的差异是知识库问答的难点。语义解析方法将自然语言问题转化成对应的形式化查询,是目前得到广泛研究的一个方向。然而,在面对日益复杂的自然语言问题时,现有的语义解析方法暴露出关系检测准确较低,形式化查询构建噪声过大等缺点。本文的研究
通过对生物医学文献的信息抽取,可以提高生物医学领域知识库构建的自动化程度,以进一步支撑计算机在该领域的文献检索、诊断决策、学术查新、预测分析等方面的应用。医学专利作为一种医学科技文献,其内容创新性、时效性强,并且有完善的实验验证,在学术上和商业上均具有很高的利用价值。抗肿瘤药物是近年来备受关注的一个研究热点,该领域专利公开量也较多,但目前针对抗肿瘤药物专利的分析工作主要靠人工完成,代价较高。研究从
随着我国经济的不断发展壮大,人民群众的消费水平和消费观点逐步升级提高,房地产行业迎来了黄金时期,家装市场上的客户需求也与日俱增。然而家装设计的繁琐和低效无法满足当今市场对数量和质量的需求,家装行业对自动化提出了更高的要求。目前,家装设计的过程需要设计师手动临摹和标注户型图信息,生成三维模型,然后根据专业化知识,通过多次调整和设计来完成家具的布局,往往需要花费大量的时间,只能提供少量的方案供用户选择
API推荐技术面向程序开发人员推荐符合当下编程场景的API方法,在现代软件开发过程中扮演着越来越重要的角色。在急剧增长的开发需求推动下,API推荐技术得到了快速发展,但对API推荐技术的评估却关注的很少。目前研究人员普遍采取的评估方法是从信息检索领域或者其他推荐领域借鉴而来,其中正确性的评估是研究人员和用户最关心的评估结果。但是本文通过实证研究发现,目前API推荐系统的正确性评估存在着以下问题:正
学习分布式且解耦的有效表示是无监督学习的一个重要研究方向,而由多个有效表示混合生成的场景在进行解绑识别时存在歧义问题,即绑定问题(Binding Problem),其广泛存在于视觉和语音等领域的现实应用中,如自动驾驶及虚拟现实中的场景分割和多演讲者语音分割等。感知成组(Perceptual Grouping,PG)是解决绑定问题的重要机制,其具备从复杂结构化输入场景中识别出各实体对象完整有效表征的
知识图谱表示学习旨在将知识图谱中的实体和关系编码到一个低维、连续的向量空间之中,以此来支撑不同领域的应用,如知识图谱补全、问答、推荐系统等。在现实应用中,知识图谱总是动态变化的,既会有新知识的加入,也会有旧知识的删除。大多数现有知识图谱表示学习模型都注重于对静态环境下的知识图谱进行编码,却忽略了其动态性。为了应对知识图谱产生的变化,这些模型需要花费很高的时间代价去重新训练整个图谱,而无法以一种更高
近年来,知识图谱规模迅速扩大,实体数量飞速增长,不同知识图谱之间实体匹配的重要性日益体现。实体匹配的质量依赖于知识图谱中实体的上下文,主要分为关系三元组、属性三元组和实体文本描述等三类。现有的相关工作只同时对其中的一类或两类实体上下文进行建模,没有同时对三类实体上下文进行建模。除此之外,现有相关工作中虽然有同时建模两类实体上下文,但是其中大部分并未平等对待这些实体上下文,并且对于多类信息不充分的实
中国人口老龄化等问题的加剧,给监护和安防等领域带来了巨大挑战。由于视频监控的逐渐普及化、低廉化以及视频的可视化、易存储等优点,它迅速成为替代人工管理的重要手段。如何高效地处理得到的视频数据,使其在满足特定场合的人体行为检测的精度要求的同时,又能兼顾效率,尽量满足实时性需求,一直是算法研究人员不断追求的目标。目前大多数的视频处理任务都基于特定场合,行为检测和识别的种类相对固定且较为单一。当传统方法利
在软件工程领域,软件开发的质量、效率和成本是软件开发过程中关注的三个核心问题。进入二十一世纪以来,随着互联网的普及,信息技术呈现爆炸性地增长,软件系统的规模和复杂性也在不断增加,软件开发的效率问题也越来越受到关注。为了提高开发的效率,许多软件开发的技术被陆续提出,开发者们希望通过代码搜索等技术手段实现高效的代码重用。因此代码搜索技术的研究有着重要的意义。然而,现有的代码搜索技术在表示代码时并不全面
随着开发语言和各种软件社区的发展,API的数量急剧上升。为了降低API的使用难度,提高API使用效率,研究人员提出了很多种API推荐方法,这些推荐方法可以帮助编程人员更加高效地使用API。随着推荐技术的不断增加,选择合适的推荐方法对编程人员来说尤为重要。API推荐结果的评估可以为编程人员选择推荐技术提供依据,目前已有的评估方法研究较少,且主要关注于推荐结果的正确性,缺乏对推荐结果质量的关注,难以完