【摘 要】
:
行为识别是人工智能与计算机视觉领域最具挑战性的研究方向之一,在人机交互,医疗健康,智慧安防以及智能机器人等领域有着广泛的应用。行为识别技术的核心是通过聚合视频片段中每帧的预测信息从而实现视频级预测。尽管针对每帧图像的分类技术已经取得了很大的成功,但从二维图像的分类扩展到三维视频的识别仍然有一定的困难。因为从二维图像扩展到三维视频不仅因为计算复杂度的巨大提升,更需要捕捉视频中不同帧之间的时空上下文关
论文部分内容阅读
行为识别是人工智能与计算机视觉领域最具挑战性的研究方向之一,在人机交互,医疗健康,智慧安防以及智能机器人等领域有着广泛的应用。行为识别技术的核心是通过聚合视频片段中每帧的预测信息从而实现视频级预测。尽管针对每帧图像的分类技术已经取得了很大的成功,但从二维图像的分类扩展到三维视频的识别仍然有一定的困难。因为从二维图像扩展到三维视频不仅因为计算复杂度的巨大提升,更需要捕捉视频中不同帧之间的时空上下文关系。因此,如何有效的提取出视频片段中的信息是行为识别领域中的一个关键问题。相比于传统的RGB信息,骨架序列由于不包含RGB信息,因此具有简洁、易校准、易计算等优点,使其成为计算机视觉领域中的一个热门课题。在基于骨架序列的行为识别方法中,如何有效的提取骨架序列中的特征并加以利用一直是最为关键的部分。本文利用图卷积神经网络对非欧式结构数据进行特征提取,学习相关行为的潜在信息,通过对先验知识的学习从而得到样本的整体分布情况。在此基础上,本文提出了三种基于人体骨架的行为识别方法,具体的研究成果及内容如下:(1)从提高识别精度的角度出发,提出了一种基于人体骨架的多方向图卷积行为识别方法。首先,对骨架数据进行预处理,降低骨骼点数据中的噪声干扰;其次,利用对称归一化的加权平均方法构建了一张时空图,从而更有效地捕捉骨骼数据的时空特征;最后,将关节点信息流和骨长信息流进行融合,从而得到最终的分类结果。(2)从减少网络中参数量的角度出发,提出了一种多模态轻量级行为识别方法。首先通过多模态数据融合的方式,将多种信息流数据进行融合;其次先后通过空间流模块和时间流模块获得对应的空间信息和时间信息;最后利用全连接层从而获得最终的分类结果。(3)从减少运算量的同时尽可能的提高识别精度的角度出发,提出了一种基于注意力机制的轻量级移位图卷积行为识别方法。首先,对骨架数据进行预处理,生成可直接用于训练的关节点信息流数据集,骨长信息流数据集,基于运动信息的关节点信息流数据集和基于运动信息的骨长点信息流数据集;其次,通过基于注意力机制的空间移位模块和时间移位模块分别获得融合后数据的空间信息和时间信息;最后,关节信息和骨骼信息以及它们所对应的运动信息都被集成在一个多流框架中进行融合,从而得到最终的分类结果。
其他文献
3D目标检测是近几年来计算机视觉领域中备受关注的前沿方向,在机器人、自动驾驶、增强现实和虚拟现实中具有广泛的应用前景,如何精确地进行3D目标检测具有很大的研究意义和实际的应用价值。为了有效避免传统方法的弊端,充分发挥深度学习强大的特征学习能力,本文研究了基于深度学习的3D目标检测算法,融合了不同数据源的数据,构建了多模态特征融合框架,弥补了单模态点云语义信息不足的缺陷,以提升远小物体及遮挡物体的检
近年来,物联网技术的发展以及智能手机的普及,从智慧医疗保健行业的发展看来,可穿戴设备潜力巨大。随着传感器技术的进步,用户可以利用可穿戴设备精确地对睡眠状况以及日常运动进行实时监控,可用于各种健康保健和预防性医疗。社会的医疗保健系统与人们的生活息息相关,而当下的医疗诊断主要还是依靠于实体医院,对于预防性健康医疗的需求较大,这使得可穿戴设备具有广阔的市场前景。可穿戴式设备作为未来个人健康检测的基础,将
计算机和通信系统与物理世界的快速融合,促进了工业信息物理系统(Cyber Physical Systems,CPSs)的出现。由于集成了控制、通信、传感和计算能力的工业CPSs对接口的要求更加开放,大量的网络安全威胁涌入到系统中,这引起了学者们对工业CPSs安全性问题的广泛关注。重放攻击是工业CPSs中一种常见的数据完整性攻击。虽然针对数据重放攻击的检测方案已取得一些成果,但是这些研究通常需要已知
GIS(Geographic Information System,GIS)是用于输入、存储、查询、分析和显示地理数据的计算机系统,它继承了地理、测绘、地图、信息、通信等众多的学科知识,是多种学科交叉的综合性技术。近些年来,伴随着地理信息系统的发展,人们对于地图数据信息的需求量越来越大。地图自动制图综合研究成为GIS领域的热点内容,是地图制图自动化的难点与发展方向。地图综合主要是根据制图综合的基本
智能体是人工智能的具体实现。在群体智能中,种群中的每一个个体都可以视为智能体,这些智能体根据某些规则决策下一次的搜索轨迹,以逼近优化问题的全局最优解。目前粒子群优化(Particle Swarm Optimization,PSO)算法及其变体已被证明是求解复杂优化问题的有效方法。在过去的20年中,PSO已引起了学术界的广泛关注。然而,粒子群算法在搜索过程中存在粒子位置振荡、多样性不足和易于陷入局部
磁共振成像由于其无辐射、多参数、对比度高等特性,被广泛应用到医学成像领域。但是其过长的数据采样时间限制了其应用。自磁共振成像技术被提出以来,各种用于提升成像速度的方法被提出,比如提高最大磁场转换率与并行成像等。而当前研究的一大热点是通过对k-空间数据进行欠采样来快速成像。理论上对k-空间欠采样可以成倍的加快成像速度,但如果采样频率低于Nyquist-Shannon定理,重建出来的图像就会出现严重的
近些年来随着深度学习的发展,基于图像的虚拟试衣技术获得越来越多的关注。目前利用深度学习算法实现虚拟试衣的技术主要有两个,一是基于CAGAN的,但是该网络生成的图像质量不理想,并且无法处理较大的空间变形,二是基于VITON的,但是在试衣前后的图像存在较严重的颜色失真、面对自我遮挡时生成效果不理想以及变形网络存在一些缺陷等。因此,本文对深度学习算法应用在虚拟试衣中出现的这些问题进行了研究和解决,本文的
近年来,人工智能在诸多领域都取得了重大进展,如生物医学、智能交通、智能家居等。医学图像处理是生物医学领域热门的研究方向之一,随着人工智能技术的飞速发展,尤其是深度学习的兴起,该问题有了新的解决方案。应用深度学习技术解决常见的医学图像处理问题已经取得了一定的进展,但仍存在以下挑战:1)医学图像的获取耗时长、花销大,某些图像的获取甚至会对人体产生伤害,如何避免这些限制获得充分的医学图像辅助医生诊断?2
目标跟踪是计算机视觉范畴内一项基础而重要的研究方向,在智能监控,公共安全,人机交互和自动驾驶等诸多科学和技术领域中,都有着广泛的应用。目标跟踪的主要任务可以简单概括为,在已知视频第一帧中某个任意物体具体位置的情况下,尽可能精确地定位出在该目标后续帧中的位置。在实际应用中,由于目标会不可避免地遭遇诸如尺寸变化、形变、运动模糊等干扰因素,因此,本文对基于孪生神经网络的跟踪算法进行了深入调研,并在此基础
随着我国汽车保有量的不断增加,城市停车难问题日益凸显,AGV智能停车库作为缓解停车难问题的新型解决方案,受到了越来越多的关注。在AGV智能停车库中,主要依靠停车AGV来运输车辆,因此AGV的路径规划与协同调度策略的好坏直接关系到停车库能否稳定高效地运行。本文以AGV智能停车库作为研究背景,主要研究AGV的路径规划算法与多AGV协同调度策略,同时为了提高系统的运行效率,对AGV电池充电问题与停车位资