论文部分内容阅读
随着计算机技术的日益完善和广泛应用,电液数字控制技术已成为机械行业实现机电一体化的一种重要手段,是实现对液压系统高速、高精度控制的理想方法之一,已广泛应用于国防及民用如航空航天、汽车、冶金、武器控制、农业机械和工程机械等领域。其中,高速开关电—机械转换器是其核心技术。高速开关电—机械转换器可直接与微机相连而无需D/A转换装置,与传统的伺服阀和比例阀阀用电—机械转换器相比,具有结构简单、工艺性好、成本低、抗污染能力强、重复精度高、工作稳定可靠、能耗低等优点,目前已成为电—机械转换器的一个研究热点。对耐高压高速开关电—机械转换器的研究,能够提高电液数字控制系统的整体性能指标,更好地满足生产生活需要,进而推动相关领域理论、技术和装备的发展。论文以耐高压高速开关电—机械转换器为研究对象,采用理论分析、数值仿真和实验研究相结合的方法,对耐高压高速开关电—机械转换器关键技术进行了系统、深入的研究。基于耐高压动铁式高速开关电—机械转换器,对大行程时的吸合性能和释放性能综合考虑,分析了动态过程中的磁路变化,探讨了主要结构参数对静、动态特性的影响,完成了平面形磁极和圆锥形磁极耐高压大行程高速开关电—机械转换器的研制,仿真与实验表明这两种耐高压大行程高速开关电—机械转换器因匹配不同的负载弹簧特性以适用不同的工作行程;针对导磁套一体式耐高压高速开关电—机械转换器漏磁的问题,提出了永磁屏蔽式耐高压高速开关电—机械转换器的结构方案,并进行了仿真分析和实验研究,结果表明,采用永磁屏蔽策略可形成永磁磁通和线圈磁通相互约束的磁场状态,从而在减少漏磁的同时避免永磁体极化磁通的自锁力问题,能有效地增加电磁力并大幅提升吸合性能;作为应用的实例,将耐高压高速开关电—机械转换器应用于电液振动冲击系统,从而用高速开关阀替代了原系统所用的电液伺服阀,仿真与实验表明新系统性能满足设计要求,降低了成本。有关各章内容分述如下:第一章,从电液数字控制和高速开关阀技术应用的角度出发,探讨了高速开关电—机械转换器关键技术的研究进展,分析总结了阀用电—机械转换器的结构和高速响应特点以及发展趋势。第二章,介绍了电—机械转换器的作用、分类及结构特点;针对广泛应用的耐高压动铁式高速开关电—机械转换器,介绍了其典型结构、工作原理和性能指标;建立了电—机械转换器的动态数学模型,围绕电磁力的计算,分别介绍了磁路分析法和有限元分析法,并指出它们的各自特点和应用场合;通过仿真深入研究了高速开关电—机械转换器的动态特性,阐明了动态过程的进行规律和分析设计方法。第三章,研制了平面形磁极和圆锥形磁极耐高压大行程高速开关电—机械转换器,详细分析了其结构与工作原理;针对大行程的工作特点,结合磁路分析法和有限元分析法,分析了动态过程中的磁场/磁路变化以及磁场/磁路变化对静、动态特性的影响,阐述了结构参数的作用机理,明确了两种耐高压大行程高速开关电—机械转换器的具体结构参数值;介绍了静态特性测试系统和动态特性测试系统的原理、组成和实验方法;基于搭建的静、动态特性实验系统,实验研究了这两种电—机械转换器,并与仿真结果进行了对比。第四章,提出并介绍了新型永磁屏蔽式耐高压高速开关电—机械转换器的结构和工作原理,采用磁路分析和有限元仿真相结合的方法,探讨了其主要结构参数对静、动态特性的影响;阐述了电磁铁动态过程的功能转换分析和导磁套受压的失效形式,利用有限元工具分别进行了温升分析和强度分析,结果表明均在许可范围内;搭建了静、动态特性实验系统,进行了实验研究,并与仿真结果进行了对比;与导磁套一体式耐高压高速开关电—机械转换器进行了对比实验,结果验证了永磁屏蔽策略的有效性。第五章,作为耐高压高速开关电—机械转换器的应用实例,研制了基于高速开关阀的电液振动冲击系统,并应用于剁挫机;建立了耐高压高速开关电—机械转换器、高速开关阀和电液振动冲击系统的仿真模型,通过仿真获得其静、动态特性,并探讨了耐高压高速开关电—机械转换器的性能对电液振动冲击系统的影响;建立了冲击能测试系统,获得了基于高速开关阀的电液振动冲击系统的冲击力实验结果,并进行了实验研究和仿真对比。第六章,概况了全文的主要研究工作和成果,并展望了今后需要进一步研究的工作和方向。