论文部分内容阅读
时域天文学、系外行星搜寻、空间碎片监测是当今天文及相关应用的研究热点方向,由此需要天文观测设备有更高分辨率、更灵敏的探测能力,并且可以更持续地监测目标。这些需求需要天文设备硬件技术和自主观测控制软件技术配合发展。为了获得更好的视宁度、更长的观测时间,越来越多的天文观测设备会选择在高原、极地、太空等环境建设,这些环境人类难以常驻,决定了设备必须支持自主观测的能力,并可以被远程控制。同时,天文观测设备数量越来越多,并向网络协同观测的趋势发展。为了减少人员维护成本,集中统一管理,提高观测效率,需要加强远程自主观测的发展,建设一个更高层次的网络观测平台。另一方面,望远镜口径越来越大,设备模块越来越多,层级越发复杂,为了降低使用复杂度,兼顾不同使用场景,并且加强数据采集和故障分析平台的建设,需要建设具备多接口层次的控制软件系统。相比于国际上BOOTES、LCOGT等项目中成功实施智能化的自主观测以及远程控制组网,国内远程自主观测技术的研究起步较晚,与国际存在一定差距。国内已有围绕RTS2技术,在南极亮星巡天望远镜、圆顶结合气象站自动化控制、量子1.2米望远镜天文成像端控制系统,LAMOST及丽江2.4m望远镜升级改造等方向取得了一定进展。同时也有各个单位围绕各自设备开展对远程自主观测技术的探索,包括对南极天文观测,空间碎片观测平台,大型望远镜观测设备自主控制等,但在完全无人值守的自动化观测,以及望远镜组网观测方面,还需要有进一步的突破。本文围绕南极天文台的进一步建设、空间碎片监测网的组建、以及WFST拼接相机控制子系统这些新课题开展远程自主观测中关键技术的研究。首先对于小型望远镜种类多,设备不尽相同,需要提高软件实现的复用性,从自上而下的角度对业务进行建模;对于南极天文,需要增加远程控制的稳定性,在高延迟低带宽的卫星网络下提高控制效能;对于空间碎片监测灵活的观测需求,要完善远程自主观测控制的构架,采用更先进的框架开发,完善自主观测过程,为站点组网打好基础;对于国内首个大型拼接相机的硬件平台,需要针对其多种使用场景提出完备的控制平台方案。本论文首先明确了自主观测和控制的重要性,介绍了国内外自主观测控制技术发展现状,并介绍了南极天文、空间碎片监测和大视场巡天望远镜相机这三个需要重点发展自主观测技术的场景。本文对自主观测以及远程控制的整体架构做了定义:硬件设备层、设备控制层、观测控制层、用户服务层。为了降低模块开发复杂度,本文对设备控制层中的不同设备模块做了通用化的定义和设计,对典型设备模块做状态机分析和故障场景分析,对自主观测业务做建模,论述了一般化的观测业务,对自主观测流程中的调焦、平场、导星提出实现方案。对于南极天文,本文在南极亮星巡天望远镜等项目中实现了一套远程自主观测控制框架,对框架依赖的RTS2技术做了分析,介绍了 RTS2的接口扩展方法以及面向远程自主观测的模块开发。在此基础上,设计并实现了在南极高延迟低带宽网络条件下主-从架构的远程控制。该框架可以作为南极天文台运控的原型。对于碎片观测,本文分析其业务及所需功能,明确其组网构架,基于ZeroMQ和Protobuf的望远镜自主观测控制框架RACS2,实现了碎片自主观测的业务功能,并以兴隆碎片观测望远镜为例,提出一种云量分析方案,用于完善自主观测的天气判断。对于恒星观测模式,实现了碎片目标信息提取方法。对于WFST相机控制系统,本文设计其远程控制框架,基于微服务的设计思想,划分设备功能模块和业务模块,并对相机、配置、数据存储等关键模块做了初步设计。针对拼接相机的特点,设计基于MEF(multi-extension FITS)的文件存储方式,兼顾了对现有天文软件的兼容性。本文的创新之处如下:1)完善了自主观测平台的一般化架构定义和功能设计,提炼了南极天文以及碎片观测涉及的望远镜的各设备模块特性,给出了基本属性、状态机、故障事例的定义与分析。对于自主观测业务流程也加以分类并介绍了实现方法。基于RTS2框架,提出基于REDIS对其消息接口做扩展,并将RTS2和Tornado WEB服务框架结合,针对南极低带宽高延迟网络,构建了南极天文设备组网运行控制的原型。2)针对碎片观测业务,基于ZeroMQ和Protobuf的观测控制框架(RACS2)完成了首个碎片自主观测控制平台,配合Python脚本灵活使用,很好地满足碎片观测的功能需求。3)针对国内首个自主研发的大型望远镜拼接相机,对其远程控制平台进行了研究。分析了不同场景的功能需求和关键约束,对相机控制做了多层次多接口形式的设计,基于微服务的思想将功能模块做拆分,方便模块独立开发和调试。