论文部分内容阅读
近年来,随着微波化学工业的快速发展,对不同需求的微波化学反应系统的研究亦愈来愈备受关注。微波对物质作用不仅仅体现在加热效应,更存在一些重要的非热效应,这些非热效应对反应往往会产生巨大的影响。设计合理的微波化学反应器具备可靠的稳定性,并能高效利用电磁能量。本文以微波与少量物质反应作用为研究背景,从电子学角度出发,研究并设计了中心频率在2450MHz处且具备一定调谐能力的腔稳微波化学反应系统。本文主要阐述了课题研究的过程,通过理论计算、仿真分析和实验测试,逐步完成了从思路到设计,最后到验证的过程。首先从理论上,给出微波化学反应系统和腔体尺寸设计的依据,推导了比较少见的扇形腔场结构。设计过程中利用HFSS,ADS,SolidWorks进行腔体和系统设计,根据理论提出了一种新型实用的系统结构,避免了因置入的材料不同而产生失配。分析了TE011模的场结构和腔壁电流特点,并针对其特点创新性地提出了多种干扰模净化技术,以实现谐振腔的单模工作。其次,通过机械电机调节腔体高度,从而改变腔体的谐振频率,实现了2.2GHz到2.6GHz的调谐范围。在系统设计中,将谐振腔与射频功率放大器,移相器,衰减器以及同轴线等相连接搭建起整个微波化学反应系统,在调试过程中发现谐振腔内耦合环对于系统传递函数的影响很大,合理尺寸耦合环能保证系统正常工作。然后,利用矢量网络分析仪和频谱仪等测试仪器对实物进行测试,测试了在腔体高度分别为80mm,92mm,100mm,110m,120mm情况下,谐振空腔的S21幅频曲线及微波化学反应系统工作时的信号频谱,并将这些结果与理论计算的数据进行比较,分析了误差产生的原因。最后,文章中也阐述了课题设计中的一些不足,及未来可进一步深究的工作。在实践应用中,发现本课题的微波化学反应器设计具有良好的稳定性,鲁棒性和灵活性。课题设计的重要部分为采用模式净化技术,实现具备一定调谐能力的单模谐振腔;同时针对微波化学反应系统提出了一种新的构架,为系统设计提供了一定指导意义,解释了实验设计过程中的各类现象。根据本文的设计思路,可以根据需要设计各类工作频点,更大工作带宽,更大功率的反应系统。