【摘 要】
:
随着数字化科技的不断发展,数字图像信息因其具有较强的综合性和直观性等特点,在日常生活的各方面如通讯、教育、医疗等方面都得到广泛应用。同时,数字图像在存储、传输的过程中有可能会受到攻击者的非法盗取或篡改,这将损害合法信息持有者的利益,故研究出安全可靠的数字图像加密方案至关重要。因此,近年来很多信号处理的方法被应用到图像加密中,例如傅里叶变换、离散余弦变换、梅林变换、混沌映射及它们的分数阶版本等,但深
【基金项目】
:
国家自然科学基金项目:随机多参数分数离散余弦变换及图像加密研究(编号:61662047); 广东省深圳市科技计划(编号:JCYJ20160527170819911);
论文部分内容阅读
随着数字化科技的不断发展,数字图像信息因其具有较强的综合性和直观性等特点,在日常生活的各方面如通讯、教育、医疗等方面都得到广泛应用。同时,数字图像在存储、传输的过程中有可能会受到攻击者的非法盗取或篡改,这将损害合法信息持有者的利益,故研究出安全可靠的数字图像加密方案至关重要。因此,近年来很多信号处理的方法被应用到图像加密中,例如傅里叶变换、离散余弦变换、梅林变换、混沌映射及它们的分数阶版本等,但深度学习用于图像加密鲜有报道。本文设计了两种基于对抗神经网络的图像加密算法,并对其进行实验仿真与分析,最后的结果验证了这两种算法安全性高。主要研究内容如下:(1)为了克服线性图像加密系统对已知明文攻击或选择明文攻击的脆弱性,提出了一种基于对抗神经密码学结合安全散列算法SHA-256控制混沌系统的图像加密新方法。在此方案中,首先通过训练对抗神经网络(adversarial neural network,ANN)获得最优网络模型,然后将训练好的网络模型用于获得类似噪声的中间图像。随后,对中间图像执行基于Logistic映射的异或运算以获得最终密文。神经网络固有的非线性特性保证了所提出系统抵抗常见普通攻击的能力。借助明文依赖的SHA-256来控制Logistic映射,极大地提高了扩散性能,加密系统可以抵抗差分攻击。数值仿真结果证明了该方案的可靠性,有效性和安全性。(2)设计了一种基于有限域上的克罗内克积和对抗神经网络的图像加密算法。首先利用安全散列函数SHA-256把明文图像与密钥高度相关,并利用SHA-256生成的哈希值经过归一化来控制Logistic-Sine混沌映射,将明文像素值全部映射到有限域上,再借助有限域上的克罗内积变换来实现像素的置乱和扩散操作,最后经过神经网络的操作,对加密结果进一步地置乱。同样,由于神经网络具有固有的非线性特征,这意味着该加密系统具有高度非线性特征。此外,使用查表法构造基于G F(2 ~8)有限域上的加法和乘法运算,可以有效地提高运算速度并避免舍入误差。对所涉及的算法进行多方面的测试,仿真结果证实了本章算法具有较高的安全性和足够的密钥敏感性,对多种常见攻击具有良好的抵抗能力。
其他文献
随着移动机器人的不断改进与智能化,基于多传感器融合的同时定位与建图(SLAM)系统尤其是基于视觉SLAM成为当下研究的重点领域。但是因为相机等视觉硬件存在一些问题,当移动机器人快速运动时,有部分图像纹理缺失或者部分特征信息缺失,会导致图像信息采集出现问题,特别是单目相机还会存在图像采集频率过低以及尺度不确定性等问题。惯性测量单元(IMU)是自身携带三轴加速度和角速度的一种运动传感器,两者能够为单目
智能优化算法在控制器参数整定优化领域得到了日趋广泛的应用。其中新兴的鲸鱼优化算法(Whale Optimization Algorithm,WOA)由于结构简单、参数少、搜索能力强等特点受到了广泛关注。但WOA算法由于提出时间不长,其应用研究仍在初步阶段,算法本身还存在迭代精度较低,迭代后期易陷入局部最优等缺点。本论文针对鲸鱼优化算法所存在的不足,提出一种改进的鲸鱼优化算法(LOWOA),并将其应
滚动轴承广泛用于旋转机械中,其失效会导致生产率损失和较高的运行成本。因此,轴承的故障诊断对于确保高性能传动至关重要。最近,各个领域都成功开发了用于轴承故障诊断的数据驱动方法。但这些方法仍然存在很大的局限性,例如在训练数据和测试数据具有相同分布的情况下训练此类模型。这极大地限制了数据驱动模型的广泛应用,特别是基于神经网络的故障诊断模型。因为当操作环境和条件发生变化时,上述方法往往无法检测到故障。为了
随着我国高等教育的发展,在高校大量扩招、大学生数量激增的同时,逃课、挂科等现象开始出现,这严重影响了学生的学业与学校的校风。因此,进行有效的学业预警变得越来越重要。为了保障学校教学质量,督促学生学习,本文给出了融合考勤预警与挂科预警的学业预警方案。通过人脸识别的方式进行学生考勤,根据考勤情况生成考勤预警;并基于学生的考勤情况以及历史考试成绩等数据,利用机器学习对当前学期的课程进行挂科预测,根据预测
车辆数量的增长趋势很快,促进了交通基础设施的建设和发展。为了提高交通效率,方便人们出行,有关人员着力研究智能交通监测系统。智能交通监测系统的重要性日益凸显,而车辆跟踪是其必不可少的组成部分,因此研究车辆跟踪有重大意义。针对车辆跟踪所面临的各种问题,论文提出了一种基于深度学习和核相关滤波的车辆跟踪算法。利用改进的YOLOv3网络检测车辆的位置,在跟踪过程中根据更新策略不断调整核相关滤波的跟踪框,从而
在电子信息产业高速发展的时代,印刷电路板(printed circuit board,PCB)作为电子设备中最为基础且不可替代的一部分,在国内外有很大的应用市场。为了适应工厂高质量快速的PCB生产现状,避免因PCB质量不合格而导致对电子器件的使用寿命与使用的稳定性造成影响,需要对PCB进行高效且准确的缺陷检测。如今通过人工目检的方法已逐渐被淘汰,而基于机器视觉的智能化检测方法因检测速度快、准确率高
在无线通信领域中,调制识别是非合作通信的重要组成部分。通信技术的发展,带来的多样化信道环境,使调制识别变得越发困难。随着深度学习的出现,其在图像和语音识别方面取得了很好的效果,深度学习可以解决有效特征提取的困难,利用深度学习进行调制信号的自动识别已成为通信领域重要研究方向。首先,介绍了调制模式的基本原理和深度学习的理论,引出了常见的深度学习神经网络模型,并分析了不同神经网络模型的优缺点。然后,提出
随着教学改革的深化与深度学习的推进,校本课程逐渐成为基础教育学校教学内容的重要载体和特色化办学的突破点。学校可从明确育人目标、界定分类标准、把握课程功能、强化内容设计、开展科学评价、打造项目团队等方面切入,探索与改进校本课程的开发、设计与实施,真正实现学生核心素养的落实和德智体美劳的全面发展。
目的探讨抗-CD38单克隆抗体对输血前检测实验的干扰及其处理措施。方法收集2名接受抗-CD38单克隆抗体治疗的多发性骨髓瘤患者血样,分别进行ABO和Rh血型抗原定型、直接抗人球蛋白实验、不规则抗体筛选和鉴定、交叉配血实验;将不规则抗体筛选用试剂红细胞、抗体鉴定谱细胞、交叉配血用的献血者红细胞、平行对照用的O型K(+)E(+)红细胞与0.2 mol/L的DTT按照红细胞:DTT为1∶4的比例进行混合
在当今时代,图片作为信息存储和交流的最直观和方便载体,在互联网上大量的传播,图片数据的数量爆炸式增长,以此为前提图像检索任务的需求是目前的重要课题。水利行业伴随着水利信息化的推进,越来越多的监控摄像头被用于记录各水利设施的运行情况,同样产生了大量的图片数据。由于需要对这些水利图像数据进行智能化分析,水利图像检索方法也被迫切需求。基于哈希的图像检索方法和卷积神经网络结合后产生了深度哈希方法,能够满足